Advertisement

Origin of three-body resonances

  • E. GarridoEmail author
  • D. V. Fedorov
  • A. S. Jensen
Original Article

Abstract.

We expose the relation between the properties of the three-body continuum states and their two-body subsystems. These properties refer to their bound and virtual states and resonances, all defined as poles of the S-matrix. For one infinitely heavy core and two non-interacting light particles, the complex energies of the three-body poles are the sum of the two two-body complex pole-energies. These generic relations are modified by center-of-mass effects which alone can produce a Borromean system. We show how the three-body states evolve in 6He, 6Li, and 6Be when the nucleon-nucleon interaction is continuously switched on. The schematic model is able to reproduce the main properties in their spectra. Realistic calculations for these nuclei are shown in detail for comparison. The implications of a core with non-zero spin are investigated and illustrated for 17Ne ( 15O + p + p). Dimensionless units allow predictions for systems of different scales.

PACS.

21.45.+v Few-body systems 31.15.Ja Hyperspherical methods 25.70.Ef Resonances 11.80.Jy Many-body scattering and Faddeev equation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M.C. Gutzwiller, Rev. Mod. Phys. 70, 589 (1998).Google Scholar
  2. 2.
    G. Tanner, K. Richter, J.M. Rost, Rev. Mod. Phys. 72, 497 (2000).Google Scholar
  3. 3.
    A. Kievsky, M. Viviani, S. Rosati, Nucl. Phys. A 577, 511 (1994).Google Scholar
  4. 4.
    J.M. Richard, Phys. Rep. 212, 1 (1992).Google Scholar
  5. 5.
    L.D. Faddeev, Sov. Phys. JETP 12, 1014 (1961).Google Scholar
  6. 6.
    J. Carbonell, V.A. Karmanov, Phys. Rev. C 67, 037001 (2003).Google Scholar
  7. 7.
    E. Nielsen, D.V. Fedorov, A.S. Jensen, E. Garrido, Phys. Rep. 347, 373 (2001).Google Scholar
  8. 8.
    A.S. Jensen, K. Riisager, D.V. Fedorov, E. Garrido, Rev. Mod. Phys. 76, 215 (2004).Google Scholar
  9. 9.
    W. Glöckle H. Witala, D. Hüber, H. Kamada, J. Golak, Phys. Rep. 274, 107 (1996).Google Scholar
  10. 10.
    C.D. Lin, Phys. Rep. 257, 1 (1995).Google Scholar
  11. 11.
    T.N. Rescigno, M. Baertschy, W.A. Isaacs, C.W. McCurdy, Science 286, 2464 (1999).Google Scholar
  12. 12.
    E.O. Alt, S.B. Levin, S.L. Yakovlev, Phys. Rev. C 69, 034002 (2004).Google Scholar
  13. 13.
    A. Delfino, T. Frederico, M.S. Hussein, L. Tomio, Phys. Rev. C 61, 051301 (2000).Google Scholar
  14. 14.
    N.B. Shulgina, B.V. Danilin, L.V. Grigorenko, M.V. Zhukov, J.M. Bang, Phys. Rev. C 62, 014312 (2000).Google Scholar
  15. 15.
    T. Myo, K. Kato, S. Aoyama, K. Ikeda, Phys. Rev. C 63, 054313 (2001).Google Scholar
  16. 16.
    N. Michel, W. Nazarewicz, M. Ploszajczak, K. Bennaceur, Phys. Rev. Lett. 89, 042502 (2002).Google Scholar
  17. 17.
    R.Id. Betan, R.J. Liotta, N. Sandulescu, T. Vertse, Phys. Rev. C 67, 014322 (2003).Google Scholar
  18. 18.
    J. Jörres, M. Wiescher, F.-K. Thielemann, Phys. Rev. C 51, 392 (1995).Google Scholar
  19. 19.
    E. Garrido, D.V. Fedorov, A.S. Jensen, Nucl. Phys. A 695, 109 (2001). Google Scholar
  20. 20.
    E. Garrido, D.V. Fedorov, A.S. Jensen, H.O.U. Fynbo, Nucl. Phys. A 748, 39 (2005).Google Scholar
  21. 21.
    E.A. Kolganova, A.K. Motovilov, Y.K. Ho, Nucl. Phys. A 684, 623c (2001).Google Scholar
  22. 22.
    H. Witala, W. Glöckle, Phys. Rev. C 60, 024002 (1999).Google Scholar
  23. 23.
    Z. Papp, J. Darai, C.-Y. Hu, Z.T. Hlousek, B. Kónya, S.L. Yakovlev, Phys. Rev. A 65, 032725 (2002).Google Scholar
  24. 24.
    R. Lazauskas, J. Carbonell, Phys. Rev. C 70, 044002 (2004).Google Scholar
  25. 25.
    Y.K. Ho, Phys. Rep. 99, 1 (1983).Google Scholar
  26. 26.
    E. Garrido, D.V. Fedorov, A.S. Jensen, Phys. Rev. C. 68, 014002 (2003).Google Scholar
  27. 27.
    A. Csótó, Phys. Rev. C 49, 2244 (1994).Google Scholar
  28. 28.
    A. Csótó, Phys. Rev. C 49, 3035 (1994).Google Scholar
  29. 29.
    S. Aoyama, S. Mukai, K. Kato, K. Ikeda, Prog. Theor. Phys. 93, 99 (1995).Google Scholar
  30. 30.
    S. Aoyama, S. Mukai, K. Kato, K. Ikeda, Prog. Theor. Phys. 94, 343 (1995).Google Scholar
  31. 31.
    E. Garrido, D.V. Fedorov, A.S. Jensen, Phys. Lett. B 600, 208 (2004).Google Scholar
  32. 32.
    F. Ajzenberg-Selove, Nucl. Phys. A 490, 1 (1988).Google Scholar
  33. 33.
    E. Garrido, D.V. Fedorov, A.S. Jensen, Nucl. Phys. A 650, 247 (1999).Google Scholar
  34. 34.
    D.V. Fedorov, E. Garrido, A.S. Jensen, Few-Body Syst. 33, 153 (2003).Google Scholar
  35. 35.
    A. Cobis, A.S. Jensen, D.V. Fedorov, J. Phys. G 23, 401 (1997).Google Scholar
  36. 36.
    E. Garrido, D.V. Fedorov, A.S. Jensen, Phys. Rev. C 69, 024002 (2004).Google Scholar
  37. 37.
    E. Garrido, D.V. Fedorov, A.S. Jensen, Nucl. Phys. A 733, 85 (2004).Google Scholar
  38. 38.
    F. Ajzenberg-Selove, Nucl. Phys. A 460, 1 (1986).Google Scholar
  39. 39.
    B. Schwarzschild, Phys. Today 56, 19 (2003).Google Scholar
  40. 40.
    E. Nielsen, D.V. Fedorov, A.S. Jensen, J. Phys. B 31, 40855 (1998).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  1. 1.Instituto de Estructura de la MateriaCSICMadridSpain
  2. 2.Department of Physics and AstronomyUniversity of AarhusAarhus CDenmark

Personalised recommendations