Advertisement

Beta decay of 103Sn

  • O. Kavatsyuk
  • M. Kavatsyuk
  • L. Batist
  • A. Banu
  • F. Becker
  • A. Blazhev
  • W. Brüchle
  • J. Döring
  • T. Faestermann
  • M. Górska
  • H. Grawe
  • Z. Janas
  • A. Jungclaus
  • M. Karny
  • R. Kirchner
  • M. La Commara
  • S. Mandal
  • C. Mazzocchi
  • I. Mukha
  • S. Muralithar
  • C. Plettner
  • A. Płochocki
  • E. Roeckl
  • M. Romoli
  • M. Schädel
  • R. Schwengner
  • J. Żylicz
Original Article

Abstract.

The β decay of 103Sn, a three-neutron-particle nucleus with respect to the 100Sn core, was investigated at the GSI on-line mass separator using an array of 17 germanium crystals and a total absorption spectrometer. A total of 31 β-delayed γ-rays (29 new) of the 103Sn →103 In decay were observed and, on the basis of β-γ-γ coincidences, the 103Sn decay scheme was established for the first time. By means of total absorption spectroscopy, β intensities, the Gamow-Teller strength distribution and the summed Gamow-Teller strength value of 3.5±0.5 were determined for this decay. Its half-life and QEC value were found to be 7.0±0.2 s and 7.64±0.7 MeV, respectively. The β-delayed proton branching ratio was measured to be 1.2±0.1%. The results are discussed in comparison with shell-model predictions based on realistic and empirical interactions.

PACS.

27.60.+j 90 ⩽ A ⩽ 149 21.10.-k Properties of nuclei; nuclear energy levels 23.40.-s β decay; double β decay; electron and muon capture 23.20.Lv γ transitions and level energies 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Schneider, Z. Phys. A 348, 241 (1994).CrossRefGoogle Scholar
  2. 2.
    M. Lewitowicz, Phys. Lett. B 332, 20 (1994).CrossRefGoogle Scholar
  3. 3.
    C. Fahlander, Phys. Rev. C 63, 021307 (2001).CrossRefGoogle Scholar
  4. 4.
    M. Lipoglavšek, Phys. Rev. C 66, 011302 (2002).CrossRefGoogle Scholar
  5. 5.
    M. Lipoglavšek, Phys. Rev. Lett. 76, 888 (1996).CrossRefPubMedGoogle Scholar
  6. 6.
    M. Górska, Phys. Rev. Lett. 79, 2415 (1997).CrossRefGoogle Scholar
  7. 7.
    A. Blazhev, Phys. Rev. C 69, 064304 (2004).CrossRefGoogle Scholar
  8. 8.
    R.J. Tighe, Phys. Rev. C 49, R2871 (1994).Google Scholar
  9. 9.
    Z. Liu, Re-investigation of direct proton decay of $^{105}$Sb, GSI Scientific Report 2004, GSI 2005-1, p. 85 and to be published.Google Scholar
  10. 10.
    Z. Janas, Phys. Scr. T56, 262 (1995).Google Scholar
  11. 11.
    M. Karny, Eur. Phys. J. A 25, s01, 135 (2005), DOI: 10.1140/epjad/i2005-06-037-9.Google Scholar
  12. 12.
    C. Plettner, Phys. Rev. C 66, 044319 (2002).CrossRefGoogle Scholar
  13. 13.
    M. Gierlik, Nucl. Phys. A 724, 313 (2003).CrossRefGoogle Scholar
  14. 14.
    C. Plettner, Nucl. Phys. A 733, 20 (2004).CrossRefGoogle Scholar
  15. 15.
    S. Harissopulos, Beta decay $^{95}$Ag, to be published.Google Scholar
  16. 16.
    L. Batist, Nucl. Phys. A 720, 245 (2003).CrossRefGoogle Scholar
  17. 17.
    Z. Hu, Phys. Rev. C 60, 024315 (1999).CrossRefGoogle Scholar
  18. 18.
    Z. Hu, Phys. Rev. C 62, 064315 (2000).CrossRefGoogle Scholar
  19. 19.
    J. Kownacki, Nucl. Phys. A 627, 239 (1997).CrossRefGoogle Scholar
  20. 20.
    R. Kirchner, Nucl. Instrum. Methods Phys. Res. B 204, 179 (2003).CrossRefGoogle Scholar
  21. 21.
    I. Mukha, Phys. Rev. C 70, 044311 (2004).CrossRefGoogle Scholar
  22. 22.
    J. Eberth, Nucl. Instrum. Methods Phys. Res. A 369, 135 (1996).Google Scholar
  23. 23.
    J. Gerl, Proceedings of the Conference on Physics from Large $\gamma$ ray Detector Arrays, Berkeley, USA, 1994 (LBL 35687, UC 413, 1994) p. 159.Google Scholar
  24. 24.
    A. Gadea, Phys. Lett. B 619, 88 (2005).CrossRefGoogle Scholar
  25. 25.
    M. Karny, Nucl. Instrum. Methods Phys. Res. B 126, 411 (1997).CrossRefGoogle Scholar
  26. 26.
    J. Szerypo, Z. Phys. A 359, 117 (1997).CrossRefGoogle Scholar
  27. 27.
    P. Tidemand-Petersson, Z. Phys. A 302, 343 (1981).CrossRefGoogle Scholar
  28. 28.
    K. Rykaczewski, GSI-95-09 (1995).Google Scholar
  29. 29.
    A. Stolz, PhD Thesis, TU München (2001).Google Scholar
  30. 30.
    M. Hjorth-Jensen, T.T.S. Kuo, E. Osnes, Phys. Rep. 261, 125 (1995).CrossRefGoogle Scholar
  31. 31.
    H. Grawe, M. Lewitowicz, Nucl. Phys. A 693, 116 (2001).CrossRefGoogle Scholar
  32. 32.
    M. Karny, Nucl. Phys. A 640, 3 (1998).CrossRefGoogle Scholar
  33. 33.
    S. Agostinelli, Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).Google Scholar
  34. 34.
    J.C. Hardy, Phys. Lett. B 109, 242 (1982).CrossRefGoogle Scholar
  35. 35.
    J. Kopecky, M. Uhl, Phys. Rev. C 41, 1941 (1990).CrossRefGoogle Scholar
  36. 36.
    J. Speth, A. van der Woude, Rep. Prog. Phys. 44, 719 (1981).CrossRefGoogle Scholar
  37. 37.
    W.V. Prestwich, Z. Phys. A 315, 103 (1984).CrossRefGoogle Scholar
  38. 38.
    G. Audi, Nucl. Phys. A 729, 3 (2003).CrossRefGoogle Scholar
  39. 39.
    N.B. Gove, M.J. Martin, Nucl. Data Tables A 10, 205 (1971).Google Scholar
  40. 40.
    P. Decrock, Lincentiaats Thesis, Leuven University (1988).Google Scholar
  41. 41.
    D. De Frenne, J. Jacobs, Nucl. Data Sheets 68, 935 (1993).CrossRefGoogle Scholar
  42. 42.
    J. Blachot, Nucl. Data Sheets 89, 213 (2000).CrossRefGoogle Scholar
  43. 43.
    M. Pfützner, Nucl. Phys. A 581, 205 (1995).CrossRefGoogle Scholar
  44. 44.
    J. Blachot, Nucl. Data Sheets 86, 505 (1999).CrossRefGoogle Scholar
  45. 45.
    A. Cameron, Can. J. Phys. 35, 666 (1956).Google Scholar
  46. 46.
    P. Hornshøj, Nucl. Phys. A 187, 609 (1972).CrossRefGoogle Scholar
  47. 47.
    C.H. Johnson , Phys. Rev. C 20, 2052 (1979).CrossRefGoogle Scholar
  48. 48.
    J.L. Campbell, Tibor Papp, At. Data Nucl. Data Tables 77, 1 (2001).CrossRefGoogle Scholar
  49. 49.
    J.C. Hardy, Phys Rev. Lett. 37, 133 (1976).CrossRefGoogle Scholar
  50. 50.
    Z. Janas , Eur. Phys. J. A 23, 197 (2005).CrossRefGoogle Scholar
  51. 51.
    B.A. Brown, A. Etchegoyen, W.D.M. Rae, computer code OXBASH, MSU-NSCL report No. 524 (1988).Google Scholar
  52. 52.
    B.A. Brown, K. Rykaczewski, Phys. Rev. C 50, R2270 (1994).Google Scholar
  53. 53.
    E. Klempt, Z. Phys. C 37, 179 (1988).CrossRefGoogle Scholar
  54. 54.
    S.J. Freedman, Comments Nucl. Part. Phys. 19, 209 (1990).Google Scholar
  55. 55.
    I.S. Towner, Nucl. Phys. A 444, 402 (1985).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • O. Kavatsyuk
    • 1
    • 2
  • M. Kavatsyuk
    • 1
    • 2
  • L. Batist
    • 3
    • 4
  • A. Banu
    • 1
  • F. Becker
    • 1
  • A. Blazhev
    • 1
    • 5
  • W. Brüchle
    • 1
  • J. Döring
    • 1
  • T. Faestermann
    • 6
  • M. Górska
    • 1
  • H. Grawe
    • 1
  • Z. Janas
    • 7
  • A. Jungclaus
    • 8
  • M. Karny
    • 7
  • R. Kirchner
    • 1
  • M. La Commara
    • 4
  • S. Mandal
    • 1
  • C. Mazzocchi
    • 1
  • I. Mukha
    • 1
    • 9
  • S. Muralithar
    • 1
    • 10
  • C. Plettner
    • 1
  • A. Płochocki
    • 7
  • E. Roeckl
    • 1
  • M. Romoli
    • 4
  • M. Schädel
    • 1
  • R. Schwengner
    • 11
  • J. Żylicz
    • 7
  1. 1.GSIDarmstadtGermany
  2. 2.National Taras Shevchenko University of KyivUkraine
  3. 3.St. Petersburg Nuclear Physics InstituteRussia
  4. 4.Università “Federico II” and INFNNapoliItaly
  5. 5.University of SofiaBulgaria
  6. 6.Technische Universität MünchenGermany
  7. 7.University of WarsawPoland
  8. 8.Departamento de Fisica TeóricaUniversidad Autonoma de MadridSpain
  9. 9.Kurchatov InstituteMoscowRussia
  10. 10.Nuclear Science CenterNew DelhiIndia
  11. 11.Forschungszentrum RossendorfGermany

Personalised recommendations