Advertisement

Neutron stars with isovector scalar correlations

  • B. Liu
  • H. Guo
  • M. Di ToroEmail author
  • V. Greco
Original Article

Abstract.

Neutron stars with the isovector scalar δ-field are studied in the framework of the relativistic mean-field (RMF) approach in a pure-nucleon-plus-lepton scheme. The δ-field leads to a larger repulsion in dense neutron-rich matter and to a definite splitting of proton and neutron effective masses. Both features are influencing the stability conditions of the neutron stars. Two parametrizations for the effective nonlinear Lagrangian density are used to calculate the nuclear equation of state (EOS) and the neutron star properties, and compared to correlated Dirac-Brueckner results. We conclude that in order to reproduce reasonable nuclear structure and neutron star properties within a RMF approach, a density dependence of the coupling constants is required.

PACS.

21.65.+f Nuclear matter 21.30.Fe Forces in hadronic systems and effective interactions 26.60.+c Nuclear matter aspects of neutron stars 97.60.Jd Neutron stars 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kubis, M. Kutschera, Phys. Lett. B 399, 191 (1997).CrossRefGoogle Scholar
  2. 2.
    B. Liu, V. Greco, V. Baran, M. Colonna, M. Di Toro, Phys. Rev. C 65, 045201 (2002).CrossRefGoogle Scholar
  3. 3.
    V. Greco, M. Colonna, M. Di Toro, F. Matera, Phys. Rev. C 67, 015203 (2003).CrossRefGoogle Scholar
  4. 4.
    V. Greco, Phys. Lett. B 562, 215 (2003).CrossRefGoogle Scholar
  5. 5.
    T. Gaitanos, Nucl. Phys. A 732, 24 (2004).CrossRefGoogle Scholar
  6. 6.
    T. Gaitanos, M. Colonna, M. Di Toro, H.H. Wolter, Phys. Lett. B 595 , 209 (2004).CrossRefGoogle Scholar
  7. 7.
    J.M. Lattimer, M. Prakash, Science 304, 536 (2004).Google Scholar
  8. 8.
    C. Maieron, M. Baldo, G.F. Burgio, H.J. Schultze, Phys. Rev. D 70, 043010 (2004).CrossRefGoogle Scholar
  9. 9.
    R.C. Tolman, Phys. Rev. 55, 364 (1939)CrossRefGoogle Scholar
  10. 10.
    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939).CrossRefGoogle Scholar
  11. 11.
    G.A. Lalazissis, J. König, P. Ring, Phys. Rev. C 55, 540 (1997).CrossRefGoogle Scholar
  12. 12.
    R. Brockmann, R. Machleidt, Phys. Rev. C 42, 1965 (1990).CrossRefGoogle Scholar
  13. 13.
    T. Gross-Boelting, C. Fuchs, A. Faessler, Nucl. Phys. A 648, 105 (1999).CrossRefGoogle Scholar
  14. 14.
    B. ter Haar, R. Malfliet, Phys. Rep. 149, 207 (1987).CrossRefGoogle Scholar
  15. 15.
    T. Gaitanos, C. Fuchs, H.H. Wolter, A. Faessler, Eur. Phys. J. A 12, 421 (2001).CrossRefGoogle Scholar
  16. 16.
    A.B. Santra, U. Lombardo, Phys. Rev. C 62, 018202 (2001).CrossRefGoogle Scholar
  17. 17.
    F. de Jong, H. Lenske, Phys. Rev. C 57, 3099 (1998).CrossRefGoogle Scholar
  18. 18.
    P. Danielewicz, Nucl. Phys. A 673, 375 (2000).CrossRefGoogle Scholar
  19. 19.
    P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002).Google Scholar
  20. 20.
    A.M.S. Santos, D.P. Menezes, Phys. Rev. C 69, 045803 (2004).CrossRefGoogle Scholar
  21. 21.
    S. Typel, H.H. Wolter, Nucl. Phys. A 656, 331 (1999).CrossRefGoogle Scholar
  22. 22.
    D.P. Menezes, C. Providencia, Phys. Rev. C 70, 058801 (2004).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  1. 1.Center of Theoretical Nuclear PhysicsNational Laboratory of Heavy Ion AcceleratorLanzhouPRC
  2. 2.Institute of High Energy PhysicsChinese Academy of SciencesBeijingPRC
  3. 3.Department of Technical PhysicsPeking UniversityBeijingPRC
  4. 4.Laboratori Nazionali del SudUniversity of CataniaCataniaItaly
  5. 5.Cyclotron InstituteTexas A&M UniversityCollege StationUSA

Personalised recommendations