Advertisement

Shears band with a large dynamic moment of inertia in 197Bi

  • G. K. Mabala
  • E. Gueorguieva
  • J. F. Sharpey-Schafer
  • M. Benatar
  • R. W. Fearick
  • K. I. Korir
  • J. J. Lawrie
  • S. M. Mullins
  • S. H. T. Murray
  • N. J. Ncapayi
  • R. T. Newman
  • D. G. Roux
  • F. D. Smit
  • R. Wyss
Original Article

Abstract.

High-spin states in 197Bi were studied with the AFRODITE γ-ray array at iThemba LABS using the 181Ta( 22Ne, 6n) reaction at a beam energy of 125 MeV. A new shears band was found and linked to the low-lying states in 197Bi. Its dynamic moment of inertia, \( \Im^{{(2)}}_{}\), is considerably larger than the \( \Im^{{(2)}}_{}\) of the shears bands in the neighbouring Pb isotopes. This is probably a result of the involvement of an additional high-K h9/2 proton orbital.

PACS.

29.30.Kv X- and γ-ray spectroscopy 23.20.Lv γ transitions and level energies 21.60.Ev Collective models 27.80.+w 190 ⩽ A ⩽ 219 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amita, Ashok Kumar Jain, Balraj Singh, At. Data Nucl. Data Tables 74, 283 (2000).CrossRefGoogle Scholar
  2. 2.
    N. Fotiades et al., Phys. Rev. C 57, 1624 (1998).CrossRefGoogle Scholar
  3. 3.
    A.J.M. Plompen et al., Nucl. Phys. A 562, 61 (1993).CrossRefGoogle Scholar
  4. 4.
    L. Ducroux et al., Z. Phys. A 356, 241 (1996).CrossRefGoogle Scholar
  5. 5.
    M. Kaci et al., Nucl. Phys. A 697, 3 (2002).CrossRefGoogle Scholar
  6. 6.
    M. Kaci et al., Z. Phys. A 354, 267 (1996).CrossRefGoogle Scholar
  7. 7.
    A.K. Singh et al., Nucl. Phys. A 707, 3 (2002).CrossRefGoogle Scholar
  8. 8.
    A. Görgen et al., Nucl. Phys. A 683, 108 (2001).CrossRefGoogle Scholar
  9. 9.
    G. Baldsiefen et al., Nucl. Phys. A 574, 521 (1994).CrossRefGoogle Scholar
  10. 10.
    G. Baldsiefen et al., Nucl. Phys. A 592, 365 (1995).CrossRefGoogle Scholar
  11. 11.
    G. Zwartz et al., J. Phys. G 26, 849 (2000).CrossRefGoogle Scholar
  12. 12.
    P.J. Dagnall et al., J. Phys. G 20, 1591 (1994).Google Scholar
  13. 13.
    R.M. Clark et al., J. Phys. G 19, L57 (1993).Google Scholar
  14. 14.
    A.N. Wilson et al., Phys. Lett. B 505, 6 (2001).CrossRefGoogle Scholar
  15. 15.
    S. Frauendorf, Nucl. Phys. A 557, 259c (1993).CrossRefGoogle Scholar
  16. 16.
    S. Frauendorf, Z. Phys. A 358, 163 (1997).CrossRefGoogle Scholar
  17. 17.
    A.O. Macchiavelli et al., Phys. Rev. C 57, R1073 (1998).Google Scholar
  18. 18.
    A.O. Macchiavelli et al., Phys. Rev. C 58, R621 (1998).Google Scholar
  19. 19.
    A.O. Macchiavelli et al., Phys. Lett. B 450, 1 (1999).Google Scholar
  20. 20.
    K. Vyvey et al., Phys. Rev. C 65, 024320 (2002).CrossRefGoogle Scholar
  21. 21.
    K. Vyvey et al., Phys. Rev. Lett. 88, 102502 (2002).CrossRefPubMedGoogle Scholar
  22. 22.
    H. Hübel, Prog. Part. Nucl. Phys. 54, 1 (2005).CrossRefGoogle Scholar
  23. 23.
    D.L. Balabanski et al., Eur. Phys. J. A 20, 191 (2004).Google Scholar
  24. 24.
    T. Chapuran et al., Phys. Rev. C 33, 130 (1986).CrossRefGoogle Scholar
  25. 25.
    X.H. Zhou et al., Z. Phys. A 353, 3 (1995).CrossRefGoogle Scholar
  26. 26.
    R.T. Newman et al., Proceedings of the Balkan School on Nuclear Physics, Balkan Phys. Lett., Special Issue, 182 (1998).Google Scholar
  27. 27.
    A. Gavron, Phys. Rev. C 21, 230 (1980).Google Scholar
  28. 28.
    A. Gavron, Computational Nuclear Physics 2, Nuclear Reactions (Springer-Verlag, New York, 1993).Google Scholar
  29. 29.
    D.C. Radford, Nucl. Instrum. Methods Phys. Res. A 361, 297 (1995).Google Scholar
  30. 30.
    K.S. Krane et al., Nucl. Data Tables 11, 351 (1973).Google Scholar
  31. 31.
    E. Gueorguieva et al., Nucl. Instrum. Methods Phys. Res. A 474, 132 (2001).Google Scholar
  32. 32.
    W. Nazarewicz, G.A. Leander, J. Dudek, Nucl. Phys. A 467, 437 (1987)Google Scholar
  33. 33.
    R. Wyss, W. Satula, W. Nazarewicz, A. Johnson, Nucl. Phys. A 511, 324 (1990)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • G. K. Mabala
    • 1
    • 2
  • E. Gueorguieva
    • 1
  • J. F. Sharpey-Schafer
    • 1
  • M. Benatar
    • 1
    • 2
  • R. W. Fearick
    • 2
  • K. I. Korir
    • 3
  • J. J. Lawrie
    • 1
  • S. M. Mullins
    • 1
  • S. H. T. Murray
    • 1
    • 2
  • N. J. Ncapayi
    • 1
  • R. T. Newman
    • 1
  • D. G. Roux
    • 1
    • 2
  • F. D. Smit
    • 1
  • R. Wyss
    • 4
  1. 1.iThemba Laboratory for Accelerator Based SciencesSomerset WestSouth Africa
  2. 2.Department of PhysicsUniversity of Cape TownRondeboschSouth Africa
  3. 3.Schonland Research Centre for Nuclear SciencesJohanesburgSouth Africa
  4. 4.KTHRoyal Institute of TechnologyStockholmSweden

Personalised recommendations