Advertisement

QCD susceptibilities and nuclear-matter saturation in a relativistic chiral theory

  • G. ChanfrayEmail author
  • M. Ericson
Original Article

Abstract.

We investigate the evolutions with density of the QCD scalar susceptibility and of the sigma mass in a chiral relativistic theory of nuclear matter, in the mean-field approximation. In order to reach saturation we need to introduce the scalar response of the nucleons. The consequences are a quite mild density dependence of the sigma mass and the progressive decoupling of the quark density fluctuations from the nucleonic ones at large densities.

PACS.

24.85.+p Quarks, gluons, and QCD in nuclei and nuclear processes 11.30.Rd Chiral symmetries 13.75.Cs Nucleon-nucleon interactions (including antinucleons, deuterons, etc.) 21.30.-x Nuclear forces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Chanfray, M. Ericson, P.A.M. Guichon, Phys. Rev. C 63, 055202 (2001).CrossRefGoogle Scholar
  2. 2.
    G. Chanfray, M. Ericson, Eur. Phys. J. A 16, 291 (2003).Google Scholar
  3. 3.
    B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).Google Scholar
  4. 4.
    B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 16, 515 (1997).Google Scholar
  5. 5.
    A.K. Kerman, L.D. Miller in Second High Energy Heavy Ion Summer Study, LBL-3675 (1974).Google Scholar
  6. 6.
    W. Bentz, A.W. Thomas, Nucl. Phys. A 696, 138 (2001).CrossRefGoogle Scholar
  7. 7.
    G. Chanfray, Nucl. Phys. A 721, 76c (2003).CrossRefGoogle Scholar
  8. 8.
    P.A.M. Guichon, Phys. Lett. B 200, 235 (1988).CrossRefGoogle Scholar
  9. 9.
    P.A.M. Guichon, K. Saito, E. Rodionov, A.W. Thomas, Nucl. Phys. A 601, 349 (1996).CrossRefGoogle Scholar
  10. 10.
    T. Hatsuda, T. Kunihiro, H. Shimizu, Phys. Rev. Lett. 82, 2840 (1999)CrossRefGoogle Scholar
  11. 11.
    F. Bonnuti, Nucl. Phys. A 677, 213 (2000)CrossRefGoogle Scholar
  12. 12.
    A. Starostin, Phys. Rev. Lett. 85, 5539 (2000).CrossRefPubMedGoogle Scholar
  13. 13.
    J.G. Messchendorp, Phys. Rev. Lett. 89, 222302 (2002).CrossRefPubMedGoogle Scholar
  14. 14.
    G. Chanfray, M. Ericson, P.A.M. Guichon, C 68, 035209 (2003).Google Scholar
  15. 15.
    S.A. Chin, Ann. Phys. (N.Y.) 108, 301 (1977).CrossRefGoogle Scholar
  16. 16.
    G. Chanfray, Z. Aouissat, P. Schuck, W. Norenberg, Phys. Lett. B 256, 325 (1991).CrossRefGoogle Scholar
  17. 17.
    L. Roca, E. Oset, M.J. Vicente Vacas, Phys. Lett. B 541, 77 (2002).CrossRefGoogle Scholar
  18. 18.
    M.R. Anastasio, L.S. Celenza, W.S. Pong, C.M. Shakin, Phys. Rep. 100, 328 (1983).CrossRefGoogle Scholar
  19. 19.
    K. Nakayama, S. Krewald, J. Speth, Phys. Lett. B 145, 310 (1984).CrossRefGoogle Scholar
  20. 20.
    W.M. Alberico, P. Czerski, M. Ericson, A. Molinari, Nucl. Phys. A 462, 269 (1987).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  1. 1.IPN LyonIN2P3-CNRS and UCB Lyon IVilleurbanne CedexFrance
  2. 2.Theory divisionCERNGenevaSwitzerland

Personalised recommendations