Advertisement

Double-pion photoproduction on nucleon and deuteron

  • A. Fix
  • H. Arenhövel
Original Article

Abstract.

Photoproduction of two pions on nucleon and deuteron is studied for photon energies from threshold up to Eγ = 1.5 GeV. For the elementary operator an effective Lagrangian approach is used with resonance and Born contributions. The model parameters are fixed by resonance decay widths and multipole analyses of single-pion photoproduction. A satisfactory description of total cross sections of two-pion production on the proton for various charge channels is achieved, except for π0π0 production for which a significant underestimation is found near threshold. The operator then serves for the evaluation of this reaction on the deuteron in the impulse approximation. In addition, NN rescattering in the final state is taken into account, but πN and ππ rescatterings are neglected. Results are presented for total cross sections and target asymmetries.

PACS.

13.60.-r Photon and charged-lepton interactions with hadrons 13.60.Le Meson production 21.45.+v Few-body systems 25.20.-x Photonuclear reactions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Capstick, W. Roberts, Phys. Rev. D 49, 4570 (1994).CrossRefGoogle Scholar
  2. 2.
    J.A. Gomez Tejedor, E. Oset, Nucl. Phys. A 600, 413 (1996).CrossRefGoogle Scholar
  3. 3.
    L.Y. Murphy, J.M. Laget, DAPHNIA/SPhN 96-10 (1996).Google Scholar
  4. 4.
    K. Ochi, M. Hirata, T. Takaki, Phys. Rev. C 56, 1472 (1997).CrossRefGoogle Scholar
  5. 5.
    M. Ripani, Nucl. Phys. A 672, 220 (2000).CrossRefGoogle Scholar
  6. 6.
    V. Bernard, N. Kaiser, U.-G. Meissner, Phys. Lett. B 382, 19 (1996), arXiv:nucl-th/9604010CrossRefGoogle Scholar
  7. 7.
    D. Lüke, P. Söding, Springer Tracts Mod. Phys. 59, 39 (1971).Google Scholar
  8. 8.
    A. Zabrodin, Phys. Rev. C 55, R1617 (1997).Google Scholar
  9. 9.
    V. Kleber, Eur. Phys. J. A 9, 1 (2000).CrossRefGoogle Scholar
  10. 10.
    J.D. Bjorken, S.D. Drell, Relativistic Quantum Mechanics (McGraw-Hill, 1964).Google Scholar
  11. 11.
    S. Ong, J. Wiele, Phys. Rev. C 63, 024614 (2001).CrossRefGoogle Scholar
  12. 12.
    Particle Data Group, Eur. Phys. J. C 15, 1 (2000).Google Scholar
  13. 13.
    D. Drechsel, S.S. Kamalov, L. Tiator, Nucl. Phys. A 645, 145 (1999).CrossRefGoogle Scholar
  14. 14.
    D.M. Manley, E.M. Saleski, Phys. Rev. D 45, 4002 (1992).CrossRefGoogle Scholar
  15. 15.
    K. Gottfried, J.D. Jackson, Nuovo Cimento 33, 309 (1964).Google Scholar
  16. 16.
    M.P. Locher, W. Sandhas, Z. Phys. 195, 461 (1966).CrossRefGoogle Scholar
  17. 17.
    A. Dar, Phys. Rev. Lett, 13, 91 (1964).Google Scholar
  18. 18.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (National Bureau of Standards, 1972).Google Scholar
  19. 19.
    M.G. Hauser, Phys. Rev. 160, 1215 (1967).CrossRefGoogle Scholar
  20. 20.
    M. Hirata, N. Katagiri, T. Takaki, Phys. Rev. C 67, 034601 (2003).CrossRefGoogle Scholar
  21. 21.
    Aachen-Berlin-Bonn-Hamburg-Heidelberg-München Collaboration, Phys. Rev. 175, 1669 (1968).CrossRefGoogle Scholar
  22. 22.
    A. Braghieri, Phys. Lett. B 363, 46 (1995).CrossRefGoogle Scholar
  23. 23.
    W. Langgärtner, Phys. Rev. Lett. 87, 052001 (2001).CrossRefPubMedGoogle Scholar
  24. 24.
    M. Wolf, Eur. Phys. J. A 9, 5 (2000).CrossRefGoogle Scholar
  25. 25.
    Y. Assafiri, Phys. Rev. Lett. 90, 222001 (2003).CrossRefPubMedGoogle Scholar
  26. 26.
    J.C. Nacher, E. Oset, M.J. Vicente Vacas, L. Roca, Nucl. Phys. A 695, 295 (2001).CrossRefGoogle Scholar
  27. 27.
    H.G. Hilpert, Nucl. Phys. B 21, 93 (1970).Google Scholar
  28. 28.
    Y. Oh, T.-S.H. Lee, Phys. Rev. C 69, 025201 (2004).Google Scholar
  29. 29.
    L. Roca, E. Oset, M.J. Vicente Vacas, Phys. Lett. B 541, 77 (2002).CrossRefGoogle Scholar
  30. 30.
    M. Kotulla, Phys. Lett. B 578, 63 (2004). Google Scholar
  31. 31.
    F. Carbonara, Nuovo Cimento A 36, 219 (1976).Google Scholar
  32. 32.
    H. Arenhövel, A. Fix, M. Schwamb, Phys. Rev. Lett. 93, 202301 (2004).PubMedGoogle Scholar
  33. 33.
    H.J. Arends, A2 Collaboration, private communication.Google Scholar
  34. 34.
    J.M. Laget, Phys. Rep. 69, 1 (1981).Google Scholar
  35. 35.
    M.I. Levchuk, V.A. Petrunkin, M. Schumacher, Z. Phys. A 355, 317 (1996).Google Scholar
  36. 36.
    E.M. Darwish, H. Arenhövel, M. Schwamb, Eur. Phys. J. A 16, 111 (2003).Google Scholar
  37. 37.
    J. Haidenbauer, W. Plessas, Phys. Rev. C 30, 1822 (1984).Google Scholar
  38. 38.
    R. Schiffer, Nucl. Phys. B 38, 628 (1972).Google Scholar
  39. 39.
    B. Krusche, M. Fuchs, V. Metag, Eur. Phys. J. A 6, 309 (1999).Google Scholar
  40. 40.
    V.M. Kolybasov, V.G. Ksenzov, Yad. Fiz. 22, 720 (1975), (Sov. J. Nucl. Phys. 22, 372 (1976))Google Scholar
  41. 41.
    M. Asai, Z. Phys. A 344, 335 (1995).Google Scholar
  42. 42.
    J.A. Gomez Tejedor, E. Oset, H. Toki, Phys. Lett. B 346, 240 (1995).Google Scholar
  43. 43.
    S. Strauch, Fizika B 13, 179 (2004), nucl-ex/0407008.Google Scholar
  44. 44.
    G.F. Chew, M.L. Goldberger, F.E. Low, Y. Nambu, Phys. Rev. 106, 1345 (1957).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • A. Fix
    • 1
  • H. Arenhövel
    • 1
  1. 1.Institut für KernphysikJohannes Gutenberg-Universität MainzMainzGermany

Personalised recommendations