Advertisement

Observation of a superdeformed band in 190Pb

  • A. N. WilsonEmail author
  • G. D. Dracoulis
  • A. P. Byrne
  • P. M. Davidson
  • G. J. Lane
  • R. M. Clark
  • P. Fallon
  • A. Görgen
  • A. O. Macchiavelli
  • D. Ward
Original Article

Abstract.

A superdeformed band has been observed in the N = 108 isotope 190Pb. This is the most neutron-deficient Pb isotope in which superdeformed states have been observed. Several theoretical approaches have predicted that N = 108 will mark the limit of observable superdeformation in the Pb isotopes. The band, which consists of five (possibly six) transitions, is observed to feed at least one isomeric level in its decay to the ground state. This decay pattern supports a spin assignment of 10ℏ for the lowest observed level.

PACS.

21.10.Re Collective levels 23.20.-g Electromagnetic transitions 27.80.+w 190 ⩽ A ⩽ 219 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.F. Moore , Phys. Rev. Lett. 63, 360 (1989).Google Scholar
  2. 2.
    T.L. Khoo , Phys. Rev. Lett. 76, 1583 (1996).Google Scholar
  3. 3.
    G. Hackman , Phys. Rev. Lett. 79, 4100 (1997).Google Scholar
  4. 4.
    A. Lopez-Martens , Phys. Lett. B 380, 18 (1996).Google Scholar
  5. 5.
    K. Hauschild , Phys. Rev. C 55, 2819 (1997).Google Scholar
  6. 6.
    A.N. Wilson, G.D. Dracoulis, A.P. Byrne, P.M. Davidson, G.J. Lane, R.M. Clark, P. Fallon, A. Görgen, A.O. Macchiavelli, D. Ward, Phys. Rev. Lett. 90, 142501 (2003).Google Scholar
  7. 7.
    S. Siem , Phys. Rev. C 70, 014303 (2004).Google Scholar
  8. 8.
    W. Satula, S. Cwiok, W. Nazarewicz, R. Wyss, A. Johnson, Nucl. Phys. A 529, 289 (1991).Google Scholar
  9. 9.
    S.J. Krieger, P. Bonche, M.S. Weiss, J. Meyer, H. Flocard, P.-H. Heenen, Nucl. Phys. A 542, 43 (1992).Google Scholar
  10. 10.
    J. Libert, M. Girod, J.-P. Delaroche, Phys. Rev. C 60, 054301 (1999).Google Scholar
  11. 11.
    G.A. Lalazissis, P. Ring, Phys. Lett. B 427, 225 (1998).Google Scholar
  12. 12.
    D.C. Radford, Nucl. Instrum. Methods Phys. Res. A 361, 297 (1995).Google Scholar
  13. 13.
    G.D. Dracoulis, A.M. Baxter, A.P. Byrne, Phys. Lett. B 432, 37 (1998).Google Scholar
  14. 14.
    K.S. Krane, R.M. Steffen, H.I. Wheeler, Nucl. Data Tables 11, 352 (1973).Google Scholar
  15. 15.
    I. Hamamoto, B.R. Mottelson, Phys. Lett. B 333, 294 (1994).Google Scholar
  16. 16.
    F. Dönau, S. Frauendorf, J. Meng, Phys. Lett. B 387, 667 (1996).Google Scholar
  17. 17.
    J.A. Becker , Nucl. Phys. A 520, 187c (1990).Google Scholar
  18. 18.
    M. Bender, P. Bonche, T. Duguet, P.-H. Heenen, Phys. Rev. C 69, 064303 (2004).Google Scholar
  19. 19.
    K. Schiffer, B. Herskind, Nucl. Phys. A 520, 521c (1990).Google Scholar
  20. 20.
    B. Herskind , in The Labyrinth in Nuclear Structure, AIP Conf. Proc. 701, 303 (2004).Google Scholar
  21. 21.
    G.D. Dracoulis , in preparation.Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • A. N. Wilson
    • 1
    • 2
    Email author
  • G. D. Dracoulis
    • 1
  • A. P. Byrne
    • 1
    • 2
  • P. M. Davidson
    • 1
  • G. J. Lane
    • 1
  • R. M. Clark
    • 3
  • P. Fallon
    • 3
  • A. Görgen
    • 3
  • A. O. Macchiavelli
    • 3
  • D. Ward
    • 3
  1. 1.Department of Nuclear Physics, Research School of Physical Sciences and EngineeringAustralian National UniversityCanberraAustralia
  2. 2.Department of Physics, The FacultiesAustralian National UniversityCanberraAustralia
  3. 3.Nuclear Science DivisionLawrence Berkeley National LaboratoryBerkeleyCA, USA

Personalised recommendations