Fusion near the Coulomb barrier for the synthesis of heavy and superheavy elements: A theoretical approach

  • N. Bhatia
  • S. S. MalikEmail author
  • A. K. Jain
Original Article


The compound nucleus formation is considered as a two-step process of touching and subsequent tunneling of the projectile into the target. The deep minima in the potential energy curve are due to shell effects in the experimental binding energies and give possible target-projectile combinations for the synthesis of heavy and superheavy elements. The asymmetric channels thus obtained are in remarkable agreement with the known experimental channels. In our model, the colliding partners are first shown to be captured in the pocket behind the outer (touching) barrier and the composite system so formed finally tunnels through the inner (fusion) barrier to form the resulting compound nucleus. These calculations reveal the importance of the fusion barrier, which occur only for the asymmetric target-projectile combinations. The calculated fusion cross-sections show a reasonable comparison with the observed one-neutron evaporation residue cross-sections. An estimate of the excitation energy carried by the compound nucleus is also obtained from our model calculations.


24.10.-i Nuclear-reaction models and methods 25.70.Gh Compound nucleus 25.70.Jj Fusion and fusion-fission reactions 25.60.Pj Fusion reactions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Hofmann, Rep. Prog. Phys. 61, 639 (1998).Google Scholar
  2. 2.
    S. Hofmann, G. Munzenberg, Rev. Mod. Phys. 72, 733 (2000).Google Scholar
  3. 3.
    P. Armbruster, Annu. Rev. Nucl. Part. Sci. 50, 411 (2000).Google Scholar
  4. 4.
    Ch.E. Dullmann, Nature 418, 859 (2002).Google Scholar
  5. 5.
    S. Hofmann, Eur. Phys. J. A 10, 5 (2001).Google Scholar
  6. 6.
    Yu.Ts. Oganessian, Eur. Phys. J. A 5, 68 (1999)Google Scholar
  7. 7.
    H.J. Fink, Proceedings of the International Conference on Reactions between Complex Nuclei, Nashville, June 1974, Vol. 2 (North Holland, Amsterdam, 1974) p. 21.Google Scholar
  8. 8.
    A. Sandulescu, R.K. Gupta, W. Scheid, W. Greiner, Phys. Lett. B 60, 225 (1976).Google Scholar
  9. 9.
    R.K. Gupta, A. Sandulescu, W. Greiner, Phys. Lett. B 67, 217 (1977).Google Scholar
  10. 10.
    R.K. Gupta, C. Parvulescu, A. Sandulescu, W. Greiner, Z. Phys. A 283, 217 (1977).Google Scholar
  11. 11.
    R. Aroumougame, N. Malhotra, S.S. Malik, R.K. Gupta, Phys. Rev. C 35, 994 (1987).Google Scholar
  12. 12.
    W. Greiner, R.K. Gupta (Editors), Heavy Elements and Related New Phenomena (World Scientific Publ., 1999).Google Scholar
  13. 13.
    Caiwan Shen, Grigori Kosenko, Yasuhisa Abe, Phys. Rev. C 66, 061602 (2002).Google Scholar
  14. 14.
    D.R. Saroha, R.K. Gupta, J. Phys. G 12, 1265 (1986).Google Scholar
  15. 15.
    S.S. Malik, N. Malhotra, D.R. Saroha, R.K. Gupta, International Centre for Theoretical Physics, Trieste, Italy, Report No. IC/86/128.Google Scholar
  16. 16.
    J. Maruhn, W. Greiner, Z. Phys. 251, 431 (1972).Google Scholar
  17. 17.
    F. Caitucoli, M. Asghar, G. Barreau, B. Leroux, P. Perrin, M. Maurel, T.P. Doan, A. Sicre, in Proceedings of the International Conference on Nuclear Data for Basic and Applied Science, Sante Fe, NM, 13-17 May, 1985 (Gordon and Breach Science Publ., 1986).Google Scholar
  18. 18.
    G. Audi, A.H. Wapstra, G. Thibalt, Nucl. Phys. A 729, 337 (2003).Google Scholar
  19. 19.
    J. Blocki, J. Randrup, W.J. Swiatecki, C.F. Tsang, Ann. Phys. (N.Y.) 105, 427 (1977).Google Scholar
  20. 20.
    H. Kroger, W. Scheid, J. Phys. G 6, L85 (1980).Google Scholar
  21. 21.
    S. Yamaji, W. Scheid, H.J. Fink, W. Greiner, J. Phys. G 3, 1283 (1977).Google Scholar
  22. 22.
    K.J. Le Cauteur, W.D. Lang, Nucl. Phys. 13, 32 (1959).Google Scholar
  23. 23.
    W.D. Myers, W.J. Swiatecki, Ark. Fys. 36, 343 (1967).Google Scholar
  24. 24.
    S.S. Malik, R.K. Gupta, Phys. Rev. C 39, 1992 (1989).Google Scholar
  25. 25.
    S.N. Ghosal, Phys. Rev. 80, 939 (1950).Google Scholar
  26. 26.
    G.G. Adamian, N.V. Antonenko, S.P. Ivanova, W. Scheid, Nucl. Phys. A 646, 29 (1999).Google Scholar
  27. 27.
    D.R. Inglis, Phys. Rev. 96, 1059 (1959)Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  1. 1.Department of PhysicsG.N.D. UniversityAmritsarIndia
  2. 2.Department of PhysicsIndian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations