Advertisement

The centrality dependence of transverse-energy and charged-particle multiplicity at RHIC: Statistical model analysis

  • D. ProrokEmail author
Original Article

Abstract.

The transverse-energy and charged-particle multiplicity at midrapidity and their ratio are evaluated in a statistical model with the longitudinal and transverse flows for different centrality bins at RHIC at \( \sqrt{{s_{NN}}}\) = 130 and 200 GeV. Full description of decays of hadron resonances is applied in these estimations. The predictions of the model at the freeze-out parameters, which were determined from measured particle yields and pT spectra, agree qualitatively well with the experimental data. The observed overestimation of the ratio can be explained for more central collisions by the redefinition of dNch/dη|mid.

PACS.

25.75.-q Relativistic heavy-ion collisions 25.75.Dw Particle and resonance production 24.10.Pa Thermal and statistical models 24.10.Jv Relativistic models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Prorok, Eur. Phys. J. A 24, 93 (2005).Google Scholar
  2. 2.
    W. Florkowski, W. Broniowski, M. Michalec, Acta Phys. Pol. B 33, 761 (2002).Google Scholar
  3. 3.
    W. Broniowski, W. Florkowski, Phys. Rev. Lett. 87, 272302 (2001).Google Scholar
  4. 4.
    W. Broniowski, W. Florkowski, Phys. Rev. C 65, 064905 (2002).Google Scholar
  5. 5.
    W. Broniowski, A. Baran, W. Florkowski, Acta Phys. Pol. B 33, 4235 (2002).Google Scholar
  6. 6.
    A. Baran, W. Broniowski, W. Florkowski, Acta Phys. Pol. B 35, 779 (2004).Google Scholar
  7. 7.
    PHENIX Collaboration (K. Adcox), Phys. Rev. Lett. 86, 3500 (2001).Google Scholar
  8. 8.
    PHENIX Collaboration (K. Adcox), Phys. Rev. Lett. 87, 052301 (2001).Google Scholar
  9. 9.
    STAR Collaboration (J. Adams), Phys. Rev. C 70, 054907 (2004).Google Scholar
  10. 10.
    PHENIX Collaboration (S.S. Adler), Phys. Rev. C 71, 034908 (2005)Google Scholar
  11. 11.
    Particle Data Group Collaboration (K. Hagiwara), Phys. Rev. D 66, 010001 (2002).Google Scholar
  12. 12.
    J. Cleymans, B. Kampfer, M. Kaneta, S. Wheaton, N. Xu, Phys. Rev. C 71, 054901 (2005).Google Scholar
  13. 13.
    J. Rafelski, J. Letessier, G. Torrieri, Phys. Rev. C 72, 024905 (2005), nucl-th/0412072. Google Scholar
  14. 14.
    PHENIX Collaboration (K. Adcox), Phys. Rev. Lett. 88, 242301 (2002).Google Scholar
  15. 15.
    PHENIX Collaboration (T. Chujo), Nucl. Phys. A 715, 151 (2003) and http://alice-france.in2p3.fr/qm2002/ Transparencies/20Plenary/Chujo.ppt.Google Scholar
  16. 16.
    STAR Collaboration (O. Barannikova, F. Wang), Nucl. Phys. A 715, 458 (2003).Google Scholar
  17. 17.
    PHENIX Collaboration (S.S. Adler), Phys. Rev. C 69, 034909 (2004).Google Scholar
  18. 18.
    PHENIX Collaboration (A. Bazilevsky), Nucl. Phys. A 715, 486 (2003).Google Scholar
  19. 19.
    E. Schnedermann, J. Sollfrank, U. Heinz, Phys. Rev. C 48, 2462 (1993).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institute of Theoretical PhysicsUniversity of WrocławWrocławPoland

Personalised recommendations