Advertisement

Quasielastic electron scattering in relativistic mean-field theory

  • Chen Yanjun
  • Guo Hua
Original Article

Abstract.

The density-dependent relativistic hadron (DDRH) field theory proposed recently is extended to investigate the longitudinal response function and the Coulomb sum rule in quasielastic electron scattering in the relativistic random phase approximation (RPA). The results in the DDRH model are compared with those in other models systematically. It is found that meson effective masses induced by the nonlinear terms in the nonlinear Walecka model should be used to obtain the meson Green’s functions when the longitudinal response function and the Coulomb sum rule are calculated. The effects of the δ and ρ mesons are clearly shown in quasielastic electron scattering, and the isospin-dependent attractive potential between nucleons due to the exchange of the δ-meson cancels the isospin-dependent repulsive contribution of the ρ-meson to a certain extent. The obtained results in the DDRH model are in good agreement with experimental data except for the Coulomb sum rule in 208Pb.

PACS.

25.30.Fj Inelastic electron scattering to continuum 21.65.+f Nuclear matter 21.10.-k Properties of nuclei; nuclear energy levels 21.60.-n Nuclear structure models and methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).Google Scholar
  2. 2.
    A.B. Bodmer, Nucl. Phys. A 526, 703 (1991).Google Scholar
  3. 3.
    Y. Sugahara, H. Toki, Nucl. Phys. A 579, 557 (1994)Google Scholar
  4. 4.
    F. Hofmann, C.M. Keil, H. Lenske, Phys. Rev. C 64, 034314 (2001).Google Scholar
  5. 5.
    F. Hofmann, C.M. Keil, H. Lenske, Phys. Rev. C 64, 025804 (2001).Google Scholar
  6. 6.
    S. Banik, D. Bandyopadhyay, Phys. Rev. C 66, 065801 (2002).Google Scholar
  7. 7.
    Guo Hua, Liu Bo, Zhang Jianwei, Phys. Rev. C 67, 024902 (2003).Google Scholar
  8. 8.
    H. Kurasawa, Y. Suzuki, Nucl. Phys. A 445, 685 (1985).Google Scholar
  9. 9.
    H. Kurasawa, Y. Suzuki, Phys. Lett. B 173, 377 (1986).Google Scholar
  10. 10.
    K. Wehrberger, F. Beck, Phys. Rev. C 35, 298 (1987).Google Scholar
  11. 11.
    H.C. Kim, C.J. Horowitz, M.R. Frank, Phys. Rev. C 51, 792 (1995)Google Scholar
  12. 12.
    S. Typel, H.H. Wolter, Nucl. Phys. A 656, 331 (1999).Google Scholar
  13. 13.
    G. Höhler, Nucl. Phys. B 114, 505 (1976).Google Scholar
  14. 14.
    Z.E. Meziani, Phys. Rev. Lett. 52, 2130 (1984).Google Scholar
  15. 15.
    T. Matsui, Nucl. Phys. A 370, 365 (1981).Google Scholar
  16. 16.
    J.C. Caillon, J. Labarsouque, Nucl. Phys. A 595, 189 (1995)Google Scholar
  17. 17.
    A. Zghiche, Nucl. Phys. A 572, 513 (1994).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • Chen Yanjun
    • 1
  • Guo Hua
    • 1
    • 2
  1. 1.Department of Technical Physics, and MOE Key Laboratory of Heavy Ion PhysicsPeking UniversityBeijingPRC
  2. 2.Center of Nuclear Theoretical PhysicsNational Laboratory of Heavy Ion Accelerator of LanzhouLanzhouPRC

Personalised recommendations