Advertisement

First observation of excited states in the 111Tc nucleus --A new region of deformation at 40 ⩽ Z ⩽ 46, N ≥ 68?

  • W. UrbanEmail author
  • T. Rzaca-Urban
  • J. L. Durell
  • A. G. Smith
  • I. Ahmad
Original Article

Abstract.

The 111Tc nucleus, populated in the spontaneous fission of 248Cm, was studied by means of prompt γ-ray spectroscopy using the EUROGAM2 array. Excited states in 111Tc were observed for the first time. Systematics of energy levels in odd-A Tc isotopes, obtained in our study of 107Tc and 109Tc provide a reliable spin and parity assignment I = 5/2+ to the head of the new band in 111Tc, interpreted as the π5/2+[422] orbital originating from the proton g9/2 shell. This level is most likely the ground state. Therefore, the (9/2+,7/2+) spin-parity assignment to the ground state of 111Tc, reported previously, is unlikely. Properties of the yrast band in 111Tc suggest prolate deformation of this band. There are hints that the deformation of 111Tc is larger than that of 109Tc, possibly due to admixtures of oblate-deformed configurations, which lower their excitation energy with increasing neutron number.

PACS.

21.10.-k Properties of nuclei; nuclear energy levels 23.20.-g Electromagnetic transitions 25.85.Ca Spontaneous fission 27.60.+j 90 ⩽ A ⩽ 149 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Urban, Eur. Phys. J. A 20, 381 (2004).Google Scholar
  2. 2.
    M.C.A. Hotchkis, Nucl. Phys. A 530, 111 (1991).Google Scholar
  3. 3.
    M. Houry, Eur. Phys. J. A 6, 43 (1999).Google Scholar
  4. 4.
    X.Q. Zhang, Phys. Rev. C 61, 014305 (1999).Google Scholar
  5. 5.
    P. Moller, At. Data Nucl. Data Tables 59, 185 (1995).Google Scholar
  6. 6.
    F.R. Xu , Phys. Rev. C 65, 021303(R) (2002).Google Scholar
  7. 7.
    F.-K. Thieleman, K.-L. Kratz, Proceedings of the XXII Masurian Lakes Summer School, Poland, 1991 (IOP Publishing) pp. 187-226.Google Scholar
  8. 8.
    G. Audi, A.H.Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).Google Scholar
  9. 9.
    H. Ohm, JUL-Spez-304 (1986) p. 30. Google Scholar
  10. 10.
    J.W. Borgs, Nucl. Instrum. Methods B 26, 304 (1987).Google Scholar
  11. 11.
    J.K. Hwang, Phys. Rev. C 57, 2250 (1998).Google Scholar
  12. 12.
    Evaluated Nuclear Structure Data File (2004), www.nndc. bnl.gov.Google Scholar
  13. 13.
    W. Urban, Phys. Rev. C 70, 057308 (2004).Google Scholar
  14. 14.
    W. Urban, in preparation.Google Scholar
  15. 15.
    W. Urban, Z. Phys A 358, 145 (1997).Google Scholar
  16. 16.
    W. Urban, Eur. Phys. J. A 5, 239 (1999).Google Scholar
  17. 17.
    P. Bhattacharyya, Phys. Rev. C 56, R2363 (1997).Google Scholar
  18. 18.
    C.T. Zhang, Phys. Rev. Lett. 77, 3743 (1996).Google Scholar
  19. 19.
    A. Bauchet , Eur. Phys. J. A 10, 145 (2001).Google Scholar
  20. 20.
    Ts. Venkova, Eur. Phys. J. A 15, 429 (2002).Google Scholar
  21. 21.
    Y.X. Luo, Phys. Rev. C 70, 04310 (2004).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2005

Authors and Affiliations

  • W. Urban
    • 1
    Email author
  • T. Rzaca-Urban
    • 1
  • J. L. Durell
    • 2
  • A. G. Smith
    • 2
  • I. Ahmad
    • 3
  1. 1.Faculty of PhysicsWarsaw UniversityWarsawPoland
  2. 2.Department of Physics and AstronomyUniversity of ManchesterManchesterUK
  3. 3.Argonne National LaboratoryArgonneUSA

Personalised recommendations