Advertisement

Search for \({\rm\Theta}(1540)^ + \) in the exclusive proton-induced reaction \({\rm p + {C(N)\to \Theta^ + \bar{K}^0 + {C}(N)}}\) at the energy of 70 GeV

  • The SPHINX Collaboration
Article

Abstract.

A search for narrow \(\Theta(1540)^ + \), a candidate for pentaquark baryon with positive strangeness, has been performed in an exclusive proton-induced reaction \(p + \mathrm{C}(N)\to \Theta^ + \bar{K}^0 + \mathrm{C}(N)\) on carbon nuclei or quasifree nucleons at E beam = 70 GeV (\(\sqrt{s} = 11.5\) GeV) studying nK + , pK S 0 and pK L 0 decay channels of \(\Theta(1540)^ + \) in four different final states of the \(\Theta^ + \bar{K}^0\) system. In order to assess the quality of the identification of the final states with neutron or K 0 L , we reconstructed \(\Lambda(1520)\to nK^0_S\) and \(\phi\to K^0_LK^0_S\) decays in the calibration reactions \(p + \mathrm{C}(N)\to \Lambda(1520)K^ + + \mathrm{C}(N)\) and \(p + \mathrm{C}(N)\to p\phi + \mathrm{C}(N)\). We found no evidence for narrow pentaquark peak in any of the studied final states and decay channels. Assuming that the production characteristics of the \(\Theta^ + \bar{K^0}\) system are not drastically different from those of the \(\Lambda(1520)K^ + \) and \(p\phi\) systems, we established upper limits on the cross-section ratios \(\sigma(\Theta^ + \bar{K}^0) / \sigma(\Lambda(1520)K^ + ) < \) 0.02 and \(\sigma(\Theta^ + \bar{K}^0) / \sigma(p\phi ) < \) 0.15 at 90% CL and a preliminary upper limit for the forward hemisphere cross-section \(\sigma(\Theta^ + \bar{K}^0) < \) 30 nb/nucleon.

Keywords

Production Characteristic Decay Channel Carbon Nucleus Forward Hemisphere Pentaquark Baryon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    LEPS Collaboration (T. Nakano et al. ), Phys. Rev. Lett. 91, 012002 (2003), hep-ex/0301020.Google Scholar
  2. 2.
    DIANA Collaboration (V.V. Barmin et al. ), Phys. At. Nucl. 66, 1715 (2003) (Yad. Fiz. 66, 1763 (2003)), hep-ex/0304040.CrossRefGoogle Scholar
  3. 3.
    CLAS Collaboration (S. Stepanyan et al. ), Phys. Rev. Lett. 91, 252001 (2003), hep-ex/0307018.CrossRefGoogle Scholar
  4. 4.
    SAPHIR Collaboration (J. Barth et al. ), hep-ex/0307083.Google Scholar
  5. 5.
    A.E. Asratyan, A.G. Dolgolenko, M.A. Kubantsev, hep-ex/0309042.Google Scholar
  6. 6.
    CLAS Collaboration (V. Kubarovsky et al. ), Phys. Rev. Lett. 92, 032001 (2004); 92, 049902 (2004)(E), hep-ex/0311046.CrossRefGoogle Scholar
  7. 7.
    R. Togoo et al. , Proc. Mong. Acad. Sci. 4, 2 (2003).Google Scholar
  8. 8.
    HERMES Collaboration (A. Airapetian et al. ), Phys. Lett. B 585, 213 (2004), hep-ex/0312044.CrossRefGoogle Scholar
  9. 9.
    SVD Collaboration (A. Aleev et al. ), hep-ex/0401024.Google Scholar
  10. 10.
    COSY-TOF Collaboration (M. Abdel-Bary et al. ), hep-ex/0403011.Google Scholar
  11. 11.
    P.Z. Aslanyan, V.N. Emelyanenko, G.G. Rikhkvitzkaya, hep-ex/0403044.Google Scholar
  12. 12.
    ZEUS Collaboration (S. Chekanov et al. ), hep-ex/0403051.Google Scholar
  13. 13.
    A.R. Dzierba, D. Krop, M. Swat, S. Teige, A.P. Szczepaniak, Phys. Rev. D 69, 051901 (2004), hep-ph/0311125.CrossRefGoogle Scholar
  14. 14.
    J.L. Rosner, Phys. Rev. D 69, 094014 (2004), hep-ph/0312269.CrossRefGoogle Scholar
  15. 15.
    M. Zavertyaev, hep-ph/0311250.Google Scholar
  16. 16.
    Q. Zhao, F.E. Close, hep-ph/0404075.Google Scholar
  17. 17.
    E. Klempt, hep-ph/0404270.Google Scholar
  18. 18.
    BES Collaboration (J.Z. Bai et al. ), hep-ex/0402012.Google Scholar
  19. 19.
    HERA-B Collaboration (K.T. Knopfle, M. Zavertyaev, T. Zivko), hep-ex/0403020.Google Scholar
  20. 20.
    C. Pinkenburg (for the PHENIX Collaboration, nucl-ex/0404001.Google Scholar
  21. 21.
    P. Hansen (for ALEPH Collaboration), talk at DIS 2004, http://www.saske.sk/dis04/talks/C/hansen.pdf.Google Scholar
  22. 22.
    Throsten Wengler (reporting DELPHI Collaboration results), talk at Moriond ‘04 QCD, http://moriond.in2p3. fr/QCD/2004/WednesdayAfternoon/Wengler.pdf.Google Scholar
  23. 23.
    M. Karliner, H.J. Lipkin, hep-ph/0405002.Google Scholar
  24. 24.
    SPHINX Collaboration (M.Y. Balats et al. ), Z. Phys. C 61, 223 (1994); SPHINX Collaboration (V.A. Dorofeev et al. ), Phys. At. Nucl. 57, 227 (1994) (Yad. Fiz. 57, 241 (1994)).Google Scholar
  25. 25.
    SPHINX Collaboration (D.V. Vavilov et al. ), Phys. At. Nucl. 57, 1970 (1994) (Yad. Fiz. 57, 2046 (1994)).Google Scholar
  26. 26.
    SPHINX Collaboration (M.Y. Balats et al. ), Z. Phys. C 61, 399 (1994).Google Scholar
  27. 27.
    SPHINX Collaboration (S.V. Golovkin et al. ), Eur. Phys. J. A 5, 409 (1999).Google Scholar
  28. 28.
    SPHINX Collaboration (D.V. Vavilov et al. ), Phys. At. Nucl. 63, 1391 (2000) (Yad. Fiz. 63, 1469 (2000).CrossRefGoogle Scholar
  29. 29.
    L.G. Landsberg, Phys. Rep. 320, 223 (1999).CrossRefGoogle Scholar
  30. 30.
    SPHINX Collaboration (Y.M. Antipov et al. ), Phys. At. Nucl. 65, 2070 (2002) (Yad. Fiz. 65, 2131 (2002).CrossRefGoogle Scholar
  31. 31.
    D. Diakonov, V. Petrov, M.V. Polyakov, Z. Phys. A 359, 305 (1997), hep-ph/9703373.CrossRefGoogle Scholar
  32. 32.
    H. Weigel, Eur. Phys. J. A 2, 391 (1998), hep-ph/9804260.CrossRefGoogle Scholar
  33. 33.
    Y. Antipov et al. , Nucl. Phys. Proc. Suppl. 44, 206 (1995).CrossRefGoogle Scholar
  34. 34.
    A. Kozhevnikov, V. Kubarovsky, V. Molchanov, V. Rykalin, V. Solyanik, Nucl. Instrum. Methods A 433, 164 (1999).CrossRefGoogle Scholar
  35. 35.
    CERN-Heidelberg-Padua-Paris-Rome-Serpukhov-Trieste Collaboration (B. Powell et al. ), Nucl. Instrum. Methods 198, 217 (1982).CrossRefGoogle Scholar
  36. 36.
    Y.M. Antipov et al. , Nucl. Instrum. Methods A 295, 81 (1990).Google Scholar
  37. 37.
    S.I. Bityukov et al. , IFVE-94-101.Google Scholar
  38. 38.
    Particle Data Group Collaboration (K. Hagiwara et al. ), Phys. Rev. D 66, 010001 (2002).CrossRefGoogle Scholar
  39. 39.
    M.W. Arenton, D.S. Ayres, R. Diebold, E.N. May, L. Nodulman, J.R. Sauer, A.B. Wicklund, Phys. Rev. D 25, 22 (1982).CrossRefGoogle Scholar
  40. 40.
    SPHINX Collaboration (S.V. Golovkin et al. ), Z. Phys. A 359, 435 (1997).CrossRefGoogle Scholar
  41. 41.
    V.R. Krastev et al. , JINR-P1-88-31.Google Scholar
  42. 42.
    R.E. Ansorge, J.R. Carter, J.A. Charlesworth, W.W. Neale, J.G. Rushbrooke, Phys. Rev. D 10, 32 (1974).CrossRefGoogle Scholar
  43. 43.
    W. Liu, C.M. Ko, Phys. Rev. C 68, 045203 (2003), nucl-th/0308034.CrossRefGoogle Scholar
  44. 44.
    S. Nussinov, hep-ph/0307357; R.W. Gothe, S. Nussinov, hep-ph/0308230; R.A. Arndt, I.I. Strakovsky, R.L. Workman, Phys. Rev. C 68, 042201 (2003), nucl-th/0308012, nucl-th/0311030; J. Haidenbauer, G. Krein, hep-ph/0309243; R.N. Cahn, G.H. Trilling, hep-ph/0311245; A. Casher, S. Nussinov, Phys. Lett. B 578, 124 (2004), hep-ph/0309208; A. Sibirtsev, J. Haidenbauer, S. Krewald, U.G. Meissner, hep-ph/0405099.CrossRefGoogle Scholar
  45. 45.
    D. Christian, E690 Collaboration, Quarks and Nuclear Physics 2004, Bloomington, Indiana, May 23-28, 2004, http://www.qnp2004.org/.Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • The SPHINX Collaboration

There are no affiliations available

Personalised recommendations