The neutron decay retardation spectrometer aSPECT: Electromagnetic design and systematic effects

  • F. Glück
  • S. Baeßler
  • J. Byrne
  • M. G. D. van der Grinten
  • F. J. Hartmann
  • W. Heil
  • I. Konorov
  • G. Petzoldt
  • Yu. Sobolev
  • O. Zimmer
Article

Abstract.

The apparatus described here, aSPECT, will be used for a measurement of the neutrino-electron angular correlation coefficient a in the decay of free neutrons. The idea of the aSPECT spectrometer is to measure the integrated proton energy spectrum very accurately using an energy filter by electrostatic retardation and magnetic adiabatic collimation. The main ideas of the spectrometer are presented, followed by an explanation of the adiabatic transmission function. Details of the superconducting coil and of the electrode system are given, as well as a discussion of the most important systematic effects: magnetic field and electrostatic potential inhomogeneities, deviation from adiabatic motion, scattering in the residual gas, background, Doppler effect, edge effect, and detector efficiency. Using this spectrometer, the parameter a is planned to be measured with an absolute experimental uncertainty of δa ≈ 3 . 10-4, from which the axial vector to vector coupling constant ratio λ can be determined with an accuracy of δλ ≈ 0.001.

PACS.

23.40.-s Beta decay; double beta decay; electron and muon capture 13.30.-a Decays of baryons 12.15.Hh Determination of Kobayashi-Maskawa matrix elements 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Byrne, Rep. Prog. Phys. 45, 115 (1982)CrossRefGoogle Scholar
  2. 2.
    D. Dubbers, Prog. Part. Nucl. Phys. 26, 173 (1991).CrossRefGoogle Scholar
  3. 3.
    K. Schreckenbach, W. Mampe, J. Phys. G 18, 1 (1992).Google Scholar
  4. 4.
    D. Dubbers, W. Mampe, J. Döhner, Europhys. Lett. 11, 195 (1990)Google Scholar
  5. 5.
    F.E. Close, Nucl. Phys. A 508, 413 (1990).CrossRefGoogle Scholar
  6. 6.
    J.D. Jackson, S.B. Treiman, H.W. Wyld, Phys. Rev. 106, 517 (1957).CrossRefGoogle Scholar
  7. 7.
    F. Glück, I. Joó, J. Last, Nucl. Phys. A 593, 125 (1995).CrossRefGoogle Scholar
  8. 8.
    B.G. Yerozolimsky, Nucl. Instrum. Methods A 440, 491 (2000)Google Scholar
  9. 9.
    B.G. Yerozolimsky, Phys. Lett. B 263, 33 (1991)CrossRefGoogle Scholar
  10. 10.
    K. Schreckenbach, P. Liaud, R. Kossakowski, H. Nastoll, A. Bussière, J.P. Guillaud, Phys. Lett. B 349, 427 (1995)CrossRefGoogle Scholar
  11. 11.
    H. Abele, M. Astruc Hoffmann, S. Baeßler, D. Dubbers, F. Glück, U. Müller, V. Nesvizhevsky, J. Reich, O. Zimmer, Phys. Rev. Lett. 88, 211801 (2002)CrossRefGoogle Scholar
  12. 12.
    I.S. Towner, J.C. Hardy, in WEIN98 Conference Proceedings, Santa Fe, (1998) (World Scientific, Singapore, 1999), arXiv:nucl-th/9809087Google Scholar
  13. 13.
    D.H. Wilkinson, Nucl. Instrum. Methods A 488, 654 (2000).Google Scholar
  14. 14.
    Particle Data Group, K. Hagiwara, Phys. Rev. D 66, 010001 (2002).CrossRefGoogle Scholar
  15. 15.
    C. Stratowa, R. Dobrozemsky, P. Weinzierl, Phys. Rev. D 18, 3970 (1978).CrossRefGoogle Scholar
  16. 16.
    J. Byrne, P.G. Dawber, M.G.D. van der Grinten, C.G. Habeck, F. Shaikh, J.A. Spain, R.D. Scott, C.A. Baker, K. Green, O. Zimmer, J. Phys. G 28, 1325 (2002).Google Scholar
  17. 17.
    O. Zimmer, J. Byrne, M.G.D. van der Grinten, W. Heil, F. Glück, Nucl. Instrum. Methods A 440, 548 (2000).Google Scholar
  18. 18.
    J.D. Jackson, Classical Electrodynamics, 3rd edition (Wiley & Sons, 1998).Google Scholar
  19. 19.
    T. Hsu, J.L. Hirshfield, Rev. Sci. Instrum. 47, 236 (1976)CrossRefGoogle Scholar
  20. 20.
    J. Byrne, J. Morse, K.F. Smith, F. Shaikh, K. Green, G.L. Greene, Phys. Lett. B 92, 274 (1980).CrossRefGoogle Scholar
  21. 21.
    V.M. Lobashev, P.E. Spivak, Nucl. Instrum. Methods A 240, 305 (1985)Google Scholar
  22. 22.
    H. Backe, Phys. Scr. T 22, 98 (1988)Google Scholar
  23. 23.
    A. Osipowicz, arXiv:hep-ex/0109033Google Scholar
  24. 24.
    D. Beck, F. Ames, M. Beck, G. Bollen, B. Delauré, J. Deutsch, J. Dilling, O. Foerstner, T. Phalet, R. Prieels, W. Quint, P. Schmidt, P. Schuurmans, N. Severijns, B. Vereecke, S. Versyck, Nucl. Phys. A 701, 369c (2002).CrossRefGoogle Scholar
  25. 25.
    S.R. Lee, P.G. Dawber, J. Byrne, WEIN Conference Proceedings, Dubna, CIS (JINR, Russia, 1992) p. 523.Google Scholar
  26. 26.
    J. Byrne, P.G. Dawber, S.R. Lee, Nucl. Instrum. Methods A 349, 454 (1994).Google Scholar
  27. 27.
    T.G. Northrop, The Adiabatic Motion of Charged Particles (Interscience Publ., 1963).Google Scholar
  28. 28.
    P.C. Clemmow, J.P. Dougherty, Electrodynamics of Particles and Plasmas (Addison-Wesley Publ. Comp., 1969).Google Scholar
  29. 29.
    R. Dendy (Editor), Plasma Physics: An Introductional Course (Cambridge University Press, 1993).Google Scholar
  30. 30.
    F. Glück, Phys. Rev. D 47, 2840 (1993).CrossRefGoogle Scholar
  31. 31.
    H. Pietschmann, Acta Phys. Austriaca Suppl. (Particles, Currents, Symmetries), edited by P. Urban (Springer-Verlag, 1968) p. 88.Google Scholar
  32. 32.
    O. Nachtmann, Z. Phys. 215, 505 (1968).Google Scholar
  33. 33.
    C.G. Habeck, doctoral thesis, University of Sussex (1997).Google Scholar
  34. 34.
    R. Dobrozemsky, Nucl. Instrum. Methods 118, 1 (1974).Google Scholar
  35. 35.
    www-cfadc.phy.ornl.gov (go to: ELASTIC, Isotopomers of hydrogen ions ).Google Scholar
  36. 36.
    P.S. Krstic, D.R. Schultz, J. Phys. B 32, 2415 (1999)Google Scholar
  37. 37.
    C.F. Giese, W.R. Gentry, Phys. Rev. A 10, 2156 (1974)CrossRefGoogle Scholar
  38. 38.
    R.K. Janev, Elementary Processes in Hydrogen-Helium Plasmas (Springer-Verlag, 1987).Google Scholar
  39. 39.
    T. Tabata, T. Shirai, At. Data Nucl. Data Tables 76, 1 (2000).Google Scholar
  40. 40.
    D.W. Koopman, Phys. Rev. 154, 79 (1967)CrossRefGoogle Scholar
  41. 41.
    J. L’Ecuyer, J.A. Davies, N. Matsunami, Nucl. Instrum. Methods 160, 337 (1979).CrossRefGoogle Scholar
  42. 42.
    F. Glück, Axisymmetric electric field calculation with charge density method, to be published.Google Scholar
  43. 43.
    F. Glück, Axisymmetric magnetic field calculation with Legendre polynomials and elliptic integrals, to be published.Google Scholar
  44. 44.
    M.W. Garrett, J. Appl. Phys. 22, 1091 (1951)Google Scholar
  45. 45.
    G. Engeln-Müllges, F. Reutter, Numerik-Algorithmen mit Fortran 77 Programmen (Wissenschaftsverlag, 1993) Chapt. 17.Google Scholar
  46. 46.
    J.H. Verner, SIAM J. Numer. Anal. 15, 772 (1978).MATHGoogle Scholar
  47. 47.
    P.W. Hawkes, E. Kasper, Principles of Electron Optics, Vol. 1 (Academic Press, 1989).Google Scholar
  48. 48.
    E.R. Andrew, J. Sci. Instrum. 43, 936 (1966).CrossRefGoogle Scholar
  49. 49.
    K. Kaminishi, S. Nawata, Rev. Sci. Instrum. 52, 447 (1981).CrossRefGoogle Scholar
  50. 50.
    F. Glück, Axisymmetric coil design for homogeneous magnetic field, to be published.Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2004

Authors and Affiliations

  • F. Glück
    • 1
    • 2
    • 3
  • S. Baeßler
    • 1
  • J. Byrne
    • 4
  • M. G. D. van der Grinten
    • 4
  • F. J. Hartmann
    • 5
  • W. Heil
    • 1
  • I. Konorov
    • 5
  • G. Petzoldt
    • 5
  • Yu. Sobolev
    • 1
  • O. Zimmer
    • 5
  1. 1.Institut für PhysikUniversität MainzMainzGermany
  2. 2.Theory DepartmentResearch Institute for Nuclear and Particle PhysicsBudapest 114Hungary
  3. 3.Institut für KernphysikForschungszentrum KarlsruheKarlsruheGermany
  4. 4.Department of Physics and AstronomyUniversity of SussexFalmer, BrightonUK
  5. 5.Physik-Department E18Technische Universität MünchenGarchingGermany

Personalised recommendations