Measurement of the πmeson polarizabilities via the γp → γπ+n reaction

  • J. Ahrens
  • V. M. Alexeev
  • J. R. M. Annand
  • H. J. Arends
  • R. Beck
  • G. Caselotti
  • S. N. Cherepnya
  • D. Drechsel
  • L. V. Fil’kov
  • K. Föhl
  • I. Giller
  • P. Grabmayr
  • T. Hehl
  • D. Hornidge
  • V. L. Kashevarov
  • M. Kotulla
  • D. Krambrich
  • B. Krusche
  • M. Lang
  • J. C. McGeorge
  • I. J. D. MacGregor
  • V. Metag
  • M. Moinester
  • R. Novotny
  • M. Pfeiffer
  • M. Rost
  • S. Schadmand
  • S. Scherer
  • A. Thomas
  • C. Unkmeir
  • Th. Walcher
Article

Abstract.

An experiment on the radiative π{+}-meson photoproduction from the proton ( γp → γπ{+}n) was carried out at the Mainz Microtron MAMI in the kinematic region 537MeV < Eγ < 817MeV, 140°\( \theta_{{\gamma \gamma ^{\prime }}}^{{{{\rm cm}}}}\)≤180°. The π{+}-meson polarizabilities have been determined from a comparison of the data with the predictions of two different theoretical models, the first one being based on an effective pole model with pseudoscalar coupling while the second one is based on diagrams describing both resonant and nonresonant contributions. The validity of the models has been verified by comparing the predictions with the present experimental data in the kinematic region where the pion polarizability contribution is negligible ( s1 < 5mπ2) and where the difference between the predictions of the two models does not exceed 3%. In the region, where the pion polarizability contribution is substantial ( 5 < s1/mπ2 < 15, -12 < t/mπ2 < - 2), the difference \(\ensuremath{(\alpha -\beta )_{\pi^{+}}}\) of the electric (α) and the magnetic (β) polarizabilities has been determined. As a result we find \(\ensuremath{(\alpha -\beta )_{\pi^{+}}=(11.6\pm 1.5_{{\rm stat}}\pm 3.0_{{\rm syst}}\pm 0.5_{{\rm mod}})\times 10^{-4}{}{\rm fm^{3}}}\). This result is at variance with recent calculations in the framework of chiral perturbation theory.

PACS.

12.38.Qk Experimental tests 13.40.-f Electromagnetic processes and properties 13.60.Le Meson production 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Donoghue, B.R. Holstein, Phys. Rev. D 40, 2378 (1989)Google Scholar
  2. 2.
    S. Bellucci, J. Gasser, M.E. Sainio, Nucl. Phys. B 423, 80 (1994)Google Scholar
  3. 3.
    U. Bürgi, Nucl. Phys. B 479, 392 (1997).Google Scholar
  4. 4.
    A.N. Ivanov, N.I. Troitskaya, M. Nagy, Mod. Phys. Lett. A 7, 1997 (1992).Google Scholar
  5. 5.
    L.V. Fil’kov, I. Guiasu, E.E. Radescu, Phys. Rev. D 26, 3146 (1982).Google Scholar
  6. 6.
    L.V. Fil’kov, V.L. Kashevarov, Eur. Phys. J. A 5, 285 (1999).Google Scholar
  7. 7.
    V.A. Petrun’kin, Sov. J. Part. Nucl. 12, 278 (1981)Google Scholar
  8. 8.
    V. Bernard, B. Hiller, W. Weise, Phys. Lett. B 205, 16 (1988).Google Scholar
  9. 9.
    M.A. Ivanov, T. Mizutani, Phys. Rev. D 45, 1580 (1992).Google Scholar
  10. 10.
    Yu.M. Antipov, Phys. Lett. B 121, 445 (1983).Google Scholar
  11. 11.
    T.A. Aybergenov, Sov. Phys.-Lebedev Inst. Rep. 6, 32 (1984)Google Scholar
  12. 12.
    D. Babusci, Phys. Lett. B 277, 158 (1992).Google Scholar
  13. 13.
    PLUTO Collaboration (C. Berger), Z. Phys. C 26, 199 (1984).Google Scholar
  14. 14.
    DM1 Collaboration (A. Courau), Nucl. Phys. B 271, 1 (1986).Google Scholar
  15. 15.
    DM2 Collaboration (Z. Ajaltoni), in Proceedings of the VII International Workshop on Photon-Photon Collisions, Paris, 1-5 April 1986, edited by A. Courau, P. Kessler (World Scientific, Singapore, 1986).Google Scholar
  16. 16.
    MARK II Collaboration (J. Boger), Phys. Rev. D 42, 1350 (1990).Google Scholar
  17. 17.
    Crystal Ball Collaboration (H. Marsiske), Phys. Rev. D 41, 3324 (1990).Google Scholar
  18. 18.
    F. Donoghue, B. Holstein, Phys. Rev. D 48, 137 (1993).Google Scholar
  19. 19.
    A.E. Kaloshin, V.V. Serebrykov, Z. Phys. C 64, 689 (1994)Google Scholar
  20. 20.
    J. Portolés, M.R. Pennington, The Second $DA\phi NE$ Physics Handbook, edited by L. Maiani, G. Pancheri, N. Paver, Vol. 2 (SIS-Frascati, 1995) p. 579, hep-ph/9407295.Google Scholar
  21. 21.
    J. Boyer, Phys. Rev. D 42, 1350 (1990).Google Scholar
  22. 22.
    V.A. Petrun’kin, Sov. J. JETP 13, 808 (1961)Google Scholar
  23. 23.
    A. Klein, Phys. Rev. 99, 998 (1955).MATHGoogle Scholar
  24. 24.
    H.F. Jones, M.D. Scadron, Nucl. Phys. B 10, 71 (1969).Google Scholar
  25. 25.
    L.V. Fil’kov, Sov. J. Nucl. Phys. 41, 636 (1985).Google Scholar
  26. 26.
    D. Drechsel, L.V. Fil’kov, Z. Phys. A 349, 177 (1994).Google Scholar
  27. 27.
    E. Byckling, K. Kajantie, Particle Kinematics (Wiley, New York, 1973).Google Scholar
  28. 28.
    L.V. Fil’kov, Proc. Lebedev Phys. Inst. 41, 1 (1967).Google Scholar
  29. 29.
    T.A. Aybergenov, Proc. Lebedev Phys. Inst. 186, 169 (1988).Google Scholar
  30. 30.
    Th. Walcher, in Chiral Dynamics: Theory and Experiment III, Proceedings from the Institute for Nuclear Theory, Vol. 11 (World Scientific, 2000) p. 296.Google Scholar
  31. 31.
    G. Goebel, Phys. Rev. Lett. 1, 337 (1958)Google Scholar
  32. 32.
    T.A. Aybergenov, Sov. Phys.-Lebedev Inst. Rep. 5, 28 (1982).Google Scholar
  33. 33.
    J. Ahrens, Few-Body Syst. Suppl. 9, 449 (1995).Google Scholar
  34. 34.
    J. Ahrens, Preprint of Lebedev Phys. Inst. No. 52 (1996).Google Scholar
  35. 35.
    Ch. Unkmeir, PhD Thesis, Mainz University (2000).Google Scholar
  36. 36.
    Th. Walcher, Prog. Part. Nucl. Phys. 24, 189 (1990).CrossRefGoogle Scholar
  37. 37.
    J. Ahrens, Nucl. Phys. News 4, 5 (1994).MATHGoogle Scholar
  38. 38.
    I. Anthony, Nucl. Instrum. Methods A 301, 230 (1991).Google Scholar
  39. 39.
    S. Hall, Nucl. Instrum. Methods A 368, 698 (1996).Google Scholar
  40. 40.
    R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991).Google Scholar
  41. 41.
    A.R. Gabler, Nucl. Instrum. Methods A 346, 168 (1994).Google Scholar
  42. 42.
    P. Grabmayr, Nucl. Instrum. Methods A 402, 85 (1998).Google Scholar
  43. 43.
    D. Krambrich, Dipolomarbeit, Institut für Kernphysik, Mainz (2001).Google Scholar
  44. 44.
    R. Leukel, PhD Thesis, Mainz University (2001).Google Scholar
  45. 45.
    R. Brun, GEANT, Cern/DD/ee/84-1, 379 (1986).Google Scholar
  46. 46.
    N.R. Stanton, Ohio State University Report C00-1545-92 (1971).Google Scholar
  47. 47.
    W. Langgärtner, Phys. Rev. Lett. 87, 052001 (2001).CrossRefGoogle Scholar
  48. 48.
    A. Braghieri, Phys. Lett. B 363, 46 (1995).CrossRefGoogle Scholar
  49. 49.
    J. Caselotti, PhD Thesis, Mainz University (2002).Google Scholar
  50. 50.
    I. Giller, PhD Thesis, Tel Aviv University (2004).Google Scholar
  51. 51.
    S.N. Dymov, V.S. Kurbatov, I.N. Silin, S.V. Yaschenko, Nucl. Instrum. Methods A 440, 431 (2000).Google Scholar
  52. 52.
    M.V. Terentev, Sov. J. Nucl. Phys. 16, 87 (1973).Google Scholar
  53. 53.
    J. Gasser, H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).Google Scholar
  54. 54.
    S. Weinberg, Phys. Rev. Lett. 17, 616 (1966).CrossRefGoogle Scholar
  55. 55.
    E. Frlez, hep-ex/0312029.Google Scholar
  56. 56.
    J. Bijnens, G. Colangelo, G. Ecker, J. Gasser, M.E. Sainio, Phys. Lett. B 374, 210 (1996).Google Scholar
  57. 57.
    J. Bijnens, P. Talavera, Nucl. Phys. B 489, 387 (1997).Google Scholar
  58. 58.
    C.Q. Geng, I.L. Ho, T.H. Wu, Nucl. Phys. B 684, 281 (2004).Google Scholar
  59. 59.
    S. Scherer, H.W. Fearing, Phys. Rev. C 51, 359 (1995). Google Scholar
  60. 60.
    H.W. Fearing, S. Scherer, Phys. Rev. C 62, 034003 (2000).Google Scholar
  61. 61.
    I. Blomquist, J.M. Laget, Nucl. Phys. A 280, 405 (1977).Google Scholar
  62. 62.
    S.P. Baranov, A.A. Shikanyan, Sov. J. Nucl. Phys. 46, 1068 (1988).Google Scholar
  63. 63.
    R. Prange, Phys. Rev. 110, 240 (1958).Google Scholar
  64. 64.
    A.C. Hearn, Nuovo Cimento 21, 333 (1961).MATHGoogle Scholar
  65. 65.
    S.P. Baranov, Phys. At. Nucl. 60, 1322 (1997).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2004

Authors and Affiliations

  • J. Ahrens
    • 1
  • V. M. Alexeev
    • 2
  • J. R. M. Annand
    • 3
  • H. J. Arends
    • 1
  • R. Beck
    • 1
  • G. Caselotti
    • 1
  • S. N. Cherepnya
    • 2
  • D. Drechsel
    • 1
  • L. V. Fil’kov
    • 2
  • K. Föhl
    • 4
  • I. Giller
    • 5
  • P. Grabmayr
    • 6
  • T. Hehl
    • 6
  • D. Hornidge
    • 7
  • V. L. Kashevarov
    • 2
  • M. Kotulla
    • 8
  • D. Krambrich
    • 1
  • B. Krusche
    • 8
  • M. Lang
    • 1
  • J. C. McGeorge
    • 3
  • I. J. D. MacGregor
    • 3
  • V. Metag
    • 9
  • M. Moinester
    • 5
  • R. Novotny
    • 9
  • M. Pfeiffer
    • 9
  • M. Rost
    • 1
  • S. Schadmand
    • 9
  • S. Scherer
    • 1
  • A. Thomas
    • 1
  • C. Unkmeir
    • 1
  • Th. Walcher
    • 1
  1. 1.Institut für Kernphysik der Johannes-Gutenberg-UniversitätMainzGermany
  2. 2.P.N. Lebedev Physical InstituteMoscowRussia
  3. 3.Department of Physics and AstronomyGlasgow UniversityGlasgowUK
  4. 4.School of PhysicsUniversity of EdinburghEdinburghUK
  5. 5.School of Physics and AstronomyTel Aviv UniversityTel AvivIsrael
  6. 6.Physikalisches InstitutUniversität TübingenGermany
  7. 7.Mount Allison UniversitySackvilleCanada
  8. 8.Institut für PhysikBaselSwitzerland
  9. 9.II. Physikalisches InstitutUniversität GiessenGiessenGermany

Personalised recommendations