Advertisement

Systematics of deformed states around doubly-magic 40Ca

  • H. Röpke
Article

Abstract.

The low-lying rotational bands of A = 36-48 nuclei are consistently explained by starting from the recently discovered, superdeformed intrinsic state of 36Ar as the core, filling successively the first three Nilsson orbits above the Fermi border. The critical single-particle energies were obtained from experimental data as were the residual interactions in the parametrization of Brink and Kerman. Implicit are the rearrangement energies due to configuration-dependent equilibrium deformations. The binding energies of 20 experimental bandheads were used to derive the parameters while another 38 bandheads were subsequently predicted and identified almost completely. The Racavy expression reduced by 20% reproduces or predicts the values of the deformation parameter ɛ. The empirical Nilsson model amended by γ-vibrational and rotation-aligned bands accounts completely for the multi-particle excitations from the N = 2 into the N = 3 major shell which are not accessible by shell-model calculations. In the case of 40Ca a spectrum of 42 states below Ex = 8MeV is explained.

Keywords

Experimental Data Elementary Particle Deformation Parameter Rotational Band Residual Interaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.M. Endt, Nucl. Phys. A 521, 1 (1990)CrossRefGoogle Scholar
  2. 2.
    A.M. Bernstein, Ann. Phys. (N.Y.) 69, 19 (1972).CrossRefzbMATHGoogle Scholar
  3. 3.
    B.H. Wildenthal, in Progress in Particle and Nuclear Physics, edited by D.H. Wilkinson (Plenum Press, New York, 1984).Google Scholar
  4. 4.
    E.K. Warburton, J.A. Becker, D.J. Millener, B.A. Brown, Brookhaven National Laboratory Report, 40890 (1987) unpublished.Google Scholar
  5. 5.
    E. Caurier, A.P. Zucker, A. Poves, G. Martinez-Pinedo, Phys. Rev. C 50, 225 (1994).CrossRefGoogle Scholar
  6. 6.
    G. Martinez-Pinedo, A.P. Zucker, A. Poves, E. Caurier, Phys. Rev. C 55, 187 (1997).CrossRefGoogle Scholar
  7. 7.
    A. Poves, J. Sanchez-Solano, Phys. Rev. C 58, 179 (1998).CrossRefGoogle Scholar
  8. 8.
    S.M. Lenzi, Phys. Rev. C 60, 021303 (R) (1999).CrossRefGoogle Scholar
  9. 9.
    W.J. Gerace, A.M. Green, Nucl. Phys. A 93, 110 (1967).CrossRefGoogle Scholar
  10. 10.
    W.J. Gerace, A.M. Greene, Nucl. Phys. A 123, 241 (1969).CrossRefGoogle Scholar
  11. 11.
    B.H. Flowers, L.D. Skouras, Nucl. Phys. A 136, 353 (1969).CrossRefGoogle Scholar
  12. 12.
    L.D. Skouras, Nucl. Phys. A 220, 604 (1974).CrossRefGoogle Scholar
  13. 13.
    I.P. Johnstone, Nucl. Phys. A 110, 429 (1968).CrossRefGoogle Scholar
  14. 14.
    I.P. Johnstone, G.L. Payne, Nucl. Phys. A 124, 217 (1969).CrossRefGoogle Scholar
  15. 15.
    D.M. Brink, A.K. Kerman, Nucl. Phys. 12, 314 (1959).CrossRefGoogle Scholar
  16. 16.
    C.E. Svensson, Phys. Rev. C 63, 061301-1 (2001).CrossRefGoogle Scholar
  17. 17.
    P. Betz, E. Bitterwolf, B. Busshardt, H. Röpke, Z. Phys. A 276, 295 (1976).Google Scholar
  18. 18.
    E. Bitterwolf, Z. Phys. A 313, 123 (1983).Google Scholar
  19. 19.
    E. Ideguchi, Phys. Rev. Lett. 87, 222501-1 (2001).CrossRefGoogle Scholar
  20. 20.
    G. Rakavy, Nucl. Phys. 4, 375 (1957).CrossRefGoogle Scholar
  21. 21.
    S.G. Nilsson, Mat.-Fys. Medd. K. Dan. Vidensk. Selsk. 29, no. 16 (1955).Google Scholar
  22. 22.
    H. Röpke, Nucl. Phys. A 674, 95 (2000).CrossRefGoogle Scholar
  23. 23.
    M. Carchichi, B.H. Wildenthal, Phys. Rev. C 37, 1681 (1988).CrossRefGoogle Scholar
  24. 24.
    P.J. Nolan, J. Phys. G 1, 35 (1975).CrossRefGoogle Scholar
  25. 25.
    H. Hasper, Phys. Rev. C 19, 1482 (1979).CrossRefGoogle Scholar
  26. 26.
    B.A. Brown, B.H. Wildenthal, At. Data Nucl. Data Tables 33, 347 (1985).CrossRefGoogle Scholar
  27. 27.
    J.J. Kolata, J.W. Olness, E.K. Warburton, A.R. Poletti, Phys. Rev. C 13, 1944 (1976).CrossRefGoogle Scholar
  28. 28.
    W.W. Simpson, W.R. Dixon, R.S. Storey, Phys. Rev. Lett. 31, 946 (1973).CrossRefGoogle Scholar
  29. 29.
    C.D. O’Leary, Phys. Rev. C 61, 064314 (2000).CrossRefGoogle Scholar
  30. 30.
    F. Brandolini, Nucl. Phys. A 642, 387 (1998).CrossRefGoogle Scholar
  31. 31.
    P. Betz, H. Röpke, F. Glatz, G. Hammel, V. Glattes, W. Brendler, Z. Phys. 271, 195 (1974).Google Scholar
  32. 32.
    D. Rudolph, Phys. Rev. C 65, 034305-1 (2002).CrossRefGoogle Scholar
  33. 33.
    H.T. Fortune, R.R. Betts, J.N. Bishop, M.N.I. Al-Jadir, R. Middleton, Nucl. Phys. A 294, 208 (1976).CrossRefGoogle Scholar
  34. 34.
    H. Röpke, J. Brenneisen, M. Lickert, Eur. Phys. J. A 14, 159 (2002).Google Scholar
  35. 35.
    F. Brandolini, Phys. Rev. C 64, 044307 (2001).CrossRefGoogle Scholar
  36. 36.
    Th. Andersson, Eur. Phys. J. A 6, 5 (1999).zbMATHGoogle Scholar
  37. 37.
    N. Zeldes, A. Grill, A. Simieric, Mat.-Fys. Skr. Dan. Vidensk. Selsk. 3, no. 5 (1967).Google Scholar
  38. 38.
    C.J. Chiara, Phys. Rev. C 67, 041303 (R) (2003).CrossRefGoogle Scholar
  39. 39.
    C.J. Lister, A.M. Al-Naser, A.H. Behbehani, L.L. Green, P.J. Nolan, J.F. Sharpey-Schafer, J. Phys. G 6, 619 (1980).CrossRefGoogle Scholar
  40. 40.
    I. Lack, Eur. Phys. J. A 16, 309 (2003).Google Scholar
  41. 41.
    A.H. Behbehani, A.M. Al-Naser, C.J. Lister, P.J. Nolan, J.F. Sharpey-Schafer, Phys. Lett. B 74, 219 (1978).CrossRefGoogle Scholar
  42. 42.
    A.H. Behbehani, J. Phys. G 5, 1117 (1979).CrossRefGoogle Scholar
  43. 43.
    P. Bednarczyk, Eur. Phys. J. A 2, 157 (1998).CrossRefGoogle Scholar
  44. 44.
    J. Styczen, J. Chevallier, B. Haas, N. Schulz, P. Taras, M. Toulemonde, Nucl. Phys. A 262, 317 (1976).CrossRefGoogle Scholar
  45. 45.
    P.M. Endt, At. Data Nucl. Data Tables 55, 171 (1993)CrossRefGoogle Scholar
  46. 46.
    T.W. Burrows, Nucl. Data Sheets 74, 1 (1995).CrossRefGoogle Scholar
  47. 47.
    G.D. Dracoulis, J.L. Durell, W. Gelletly, J. Phys. A 6, 1772 (1973).Google Scholar
  48. 48.
    A.H. Wapstra, G. Audi, R. Hockstra, At. Data Tables 39, 281 (1988).Google Scholar
  49. 49.
    C.L. Finck, J.P. Schiffer, Nucl. Phys. A 225, 93 (1974).CrossRefGoogle Scholar
  50. 50.
    N. Schulz, W.P. Alford, A. Jamshidi, Nucl. Phys. A 162, 349 (1971).CrossRefGoogle Scholar
  51. 51.
    W.P. Alford, R.A. Lindgren, D. Elmore, R.N. Boyd, Phys. Lett. B 46, 356 (1973). CrossRefGoogle Scholar
  52. 52.
    Kamal K. Seth, A. Saha, W. Benenson, W.A. Lanford, H. Nann, B.H. Wildenthal, Phys. Rev. Lett. 33, 233 (1974).CrossRefGoogle Scholar
  53. 53.
    C.W. Towsley, D. Cline, R.N. Horoshkov, Nucl. Phys. A 204, 574 (1973).CrossRefGoogle Scholar
  54. 54.
    W.J. Gerace, A.M. Green, Nucl. Phys. A 113, 641 (1968). CrossRefGoogle Scholar
  55. 55.
    C.R. Gruhn, T.Y.T. Kuo, C.J. Maggiore, H. McMann, F. Petrovich, B.M. Preedom, Phys. Rev. C 6, 915 (1972).CrossRefGoogle Scholar
  56. 56.
    S.W. Kikstra, C. van der Leun, P.M. Endt, J.G.L. Booten, A.G.M. van Hees, A.A. Wolters, Nucl. Phys. A 512, 425 (1990).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2004

Authors and Affiliations

  • H. Röpke
    • 1
  1. 1.Physikalisches InstitutUniversität FreiburgFreiburg i.Br.Germany

Personalised recommendations