Advertisement

Inclusive K+-meson production in proton-nucleus interactions

  • M. Büscher
  • V. Koptev
  • M. Nekipelov
  • Z. Rudy
  • H. Ströher
  • Yu. Valdau
  • S. Barsov
  • M. Hartmann
  • V. Hejny
  • V. Kleber
  • N. Lang
  • I. Lehmann
  • S. Mikirtychiants
  • H. Ohm
Article

Abstract.

The production of K+-mesons in pA (A = D, C, Cu, Ag, Au) collisions has been investigated at the COoler SYnchrotron COSY-Jülich for beam energies Tp = 1.0-2.3 GeV. Double differential inclusive pC cross-sections at forward angles ϑ{K^+} < 12° as well as the target mass dependence of the K+ momentum spectra have been measured with the ANKE spectrometer. Far below the free NN threshold at TNN = 1.58 GeV the spectra reveal a high degree of collectivity in the target nucleus. From the target mass dependence of the cross-sections at higher energies, the repulsive in-medium potential of the K+-mesons can be deduced. Using pN cross-section parameterisations from the literature and our measured pD data we derive a cross-section ratio σ(pnK+X)/σ(ppK+X) ∼ (3-4).

Keywords

Elementary Particle Beam Energy Target Nucleus Meson Production Momentum Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Barsov, Nucl. Instrum. Methods Phys. Res. A 462, 364 (2001).Google Scholar
  2. 2.
    V. Koptev, Phys. Rev. Lett. 87, 022301 (2001).CrossRefGoogle Scholar
  3. 3.
    M. Nekipelov, Phys. Lett. B 540, 207 (2002).CrossRefGoogle Scholar
  4. 4.
    G. Wolf, Nucl. Phys. A 552, 549 (1993).CrossRefGoogle Scholar
  5. 5.
    Z. Rudy, Eur. Phys. J. A 15, 303 (2002).CrossRefGoogle Scholar
  6. 6.
    P.A. Piroué, A.J.S. Smith, Phys. Rev. 148, 1315 (1966).CrossRefGoogle Scholar
  7. 7.
    K. Tsushima, Phys. Rev. C, 59, 369 (1999).Google Scholar
  8. 8.
    G. Fäldt, C. Wilkin, Z. Phys. A 357, 241 (1997).CrossRefGoogle Scholar
  9. 9.
    R. Maier, Nucl. Instrum. Methods Phys. Res. A 390, 1 (1997).Google Scholar
  10. 10.
    H. Dombrowski, Nucl. Instrum. Methods Phys. Res. A 386, 228 (1997)Google Scholar
  11. 11.
    S. Barsov, Eur. Phys. J. A 21, 521 (2004)CrossRefGoogle Scholar
  12. 12.
    M. Büscher, Nucl. Instrum. Methods Phys. Res. A 481, 378 (2002).Google Scholar
  13. 13.
    N.K. Abrosimov, Sov. Phys. JETP 67, 2177 (1988) (Zh. Eksp. Teor. Fiz. 94, 1 (1988)).Google Scholar
  14. 14.
    V.V. Abaev, J. Phys. G 14, 903 (1988).CrossRefGoogle Scholar
  15. 15.
    J. Papp, Phys. Rev. Lett. 34, 601 (1975).CrossRefGoogle Scholar
  16. 16.
    Particle Data Group (K. Hagiwara ), Phys. Rev. D 66, 010001 (2002).CrossRefGoogle Scholar
  17. 17.
    V. Kleber, Phys. Rev. Lett. 91, 172304 (2003).CrossRefGoogle Scholar
  18. 18.
    D.R.F. Cochran, Phys. Rev. D 6, 3085 (1972).CrossRefGoogle Scholar
  19. 19.
    M. Büscher, Phys. Rev. C 65, 014603 (2001).CrossRefGoogle Scholar
  20. 20.
    W. Cassing, Phys. Lett. B 238, 25 (1990).CrossRefGoogle Scholar
  21. 21.
    H. Müller, K. Sistemich, Z. Phys. A 344, 197 (1992). Google Scholar
  22. 22.
    A.A. Sibirtsev, M. Büscher, Z. Phys. A 347, 191 (1994).Google Scholar
  23. 23.
    E.Ya. Paryev, Eur. Phys. J. A 5, 307 (1999).Google Scholar
  24. 24.
    W. Cassing, E. Bratkovskaya, Phys. Rep. 308, 65 (1999).CrossRefGoogle Scholar
  25. 25.
    A. Sibirtsev, W. Cassing, Nucl. Phys. A 641, 476 (1998).CrossRefGoogle Scholar
  26. 26.
    Z. Rudy, in preparation.Google Scholar
  27. 27.
    S. Schnetzer, Phys. Rev. C 40, 640 (1989).CrossRefGoogle Scholar
  28. 28.
    M. Debowski, Z. Phys. A 356, 313 (1996).CrossRefGoogle Scholar
  29. 29.
    A. Badalà, Phys. Rev. Lett. 80, 4863 (1998).CrossRefGoogle Scholar
  30. 30.
    A.V. Akindinov, JETP Lett. 72, 150 (2000).CrossRefGoogle Scholar
  31. 31.
    M. Büscher, Z. Phys. A 355, 93 (1996).CrossRefGoogle Scholar
  32. 32.
    W. Scheinast, KaoS Collaboration, Proceedings of the 7th International Workshop on Meson Production, Properties and Interaction MESON2002, 24--28 May 2002, Cracow, Poland, edited by L. Jarczyk, A. Magiera, C. Guaraldo, H. Machner (World Scientific Publishing, 2003) p. 493Google Scholar
  33. 33.
    A.B. Kaidalov, L.A. Kondratyuk, Nucl. Phys. B 57, 100 (1973)CrossRefGoogle Scholar
  34. 34.
    V. Koptev, Eur. Phys. J. A 17, 235 (2003).Google Scholar
  35. 35.
    V. Franco, R.J. Glauber, Phys. Rev. 142, 1195 (1966).CrossRefGoogle Scholar
  36. 36.
    E. Chiavassa, Phys. Lett. B, 337, 192 (1994).Google Scholar
  37. 37.
    A. Baldini, Total Cross-Sections of High Energy Particles, Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, Vol. 12, edited by H. Schopper (Springer-Verlag, Berlin, 1988).Google Scholar
  38. 38.
    http://www-hades.gsi.de/computing/pluto/html/Plu\-toIndex.htm.Google Scholar
  39. 39.
    M. Büscher, Proceedings of the XXVIII Mazurian Lakes Conference on Physics, Atomic Nucleus as a Laboratory for Fundamental Processes, 31 August--7 September 2003, Krzyze, PolandGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2004

Authors and Affiliations

  • M. Büscher
    • 1
  • V. Koptev
    • 2
  • M. Nekipelov
    • 1
    • 2
  • Z. Rudy
    • 3
  • H. Ströher
    • 1
  • Yu. Valdau
    • 1
    • 2
  • S. Barsov
    • 2
  • M. Hartmann
    • 1
  • V. Hejny
    • 1
  • V. Kleber
    • 4
  • N. Lang
    • 5
  • I. Lehmann
    • 1
    • 6
  • S. Mikirtychiants
    • 2
  • H. Ohm
    • 1
  1. 1.Institut für KernphysikForschungszentrum JülichJülichGermany
  2. 2.High Energy Physics DepartmentPetersburg Nuclear Physics InstituteGatchinaRussia
  3. 3.Institute of PhysicsJagellonian UniversityCracowPoland
  4. 4.Institut für KernphysikUniversität zu KölnKölnGermany
  5. 5.Institut für KernphysikUniversität MünsterMünsterGermany
  6. 6.Institut für Hadronen- und KernphysikForschungszentrum RossendorfDresdenGermany

Personalised recommendations