Advertisement

On the relativistic description of the nucleus

  • R. CenniEmail author
  • G. Vagradov
Article

Abstract.

We present a formalism able to generalise to a relativistically covariant scheme the standard nuclear shell model. We show that, using some generalised nuclear Green’s functions and their Lehmann representation we can define the relativistic equivalent of the non-relativistic single-particle wave function (not losing, however, the physical contribution of other degrees of freedom, like mesons and antinucleons). It is shown that the mass operator associated to the nuclear Green’s function can be approximated with the equivalent of a shell model potential and that the corresponding “single-particle wave functions” can be easily derived in a specified frame of reference and then boosted to any other system, thus fully restoring the Lorentz covariance.

Keywords

Covariance Wave Function Elementary Particle Model Potential Shell Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B.D. Serot, J.D. Walecka, Adv. Nucl. Phys 16, 1 (1986).Google Scholar
  2. 2.
    L.S. Celenza, C.M. Shakin, Relativistic Nuclear Physics (World Scientific, Singapore, 1986).Google Scholar
  3. 3.
    M. Rashdan, Phys. Rev. C 63, 044303 (2001).CrossRefGoogle Scholar
  4. 4.
    W.M. Alberico, Phys. Rev. C 38, 1801 (1988).CrossRefGoogle Scholar
  5. 5.
    R. Cenni, T.W. Donnelly, A. Molinari, Phys. Rev. C 56, 276 (1997). CrossRefGoogle Scholar
  6. 6.
    R. Cenni, G. Vagradov, Nucl. Phys. A 587, 675 (1995).CrossRefGoogle Scholar
  7. 7.
    H. Feshbach, Ann. Phys. (N.Y.) 5, 357 (1958).CrossRefzbMATHGoogle Scholar
  8. 8.
    H. Feshbach, Ann. Phys. (N.Y.) 19, 287 (1962).CrossRefzbMATHGoogle Scholar
  9. 9.
    J.S. Bell, E.J. Squires, Phys. Rev. Lett. 3, 96 (1959).CrossRefGoogle Scholar
  10. 10.
    R. Cenni, C. Ciofi degli Atti, G. Salmè, Phys. Rev. C 39, 1425 (1989).CrossRefGoogle Scholar
  11. 11.
    A. Molinari, G. Vagradov, Z. Phys. A 332, 119 (1989).Google Scholar
  12. 12.
    R. Cenni, A. Molinari, G. Vagradov, Nuovo Cimento A 107, 407 (1994).Google Scholar
  13. 13.
    D.J. Amit, Field Theory, the Renormalization Group, and Critical Phenomena (McGraw Hill, New York, 1978).Google Scholar
  14. 14.
    A.B. Migdal, Theory of Finite Fermi System (J. Wiley & Sons, New York, London, Sydney, 1967).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2004

Authors and Affiliations

  1. 1.Dipartimento di FisicaUniversità di GenovaGenovaItaly
  2. 2.Institute for Nuclear ResearchMoscowRussia

Personalised recommendations