Advertisement

Effect of resonant continuum on pairing correlations in the relativistic approach

  • Li-Gang CaoEmail author
  • Zhong-Yu Ma
Article

Abstract.

A proper treatment of the resonant continuum is to take account of not only the energy of the resonant state, but also its width. The effect of resonant states on pairing correlations is presented in the framework of the relativistic mean-field theory plus Bardeen-Cooper-Schrieffer (BCS) approximation with a constant pairing strength. The study is performed in an effective Lagrangian with the parameter set NL3 for neutron-rich even-even Ni isotopes. Results show that the contribution of the proper treatment of the resonant continuum to pairing correlations for those nuclei close to the neutron drip line is important. The pairing gaps, Fermi energies, pairing correlation energies, and binding energies are considerably affected by a proper consideration of the width of resonant states. The problem of unphysical particle gas, which may appear in the calculation of the traditional mean field plus BCS method for nuclei in the vicinity of the drip line could be well overcome when the pairing correlation is performed by using the resonant states instead of the discretized states in the continuum.

Keywords

Pairing Correlation Proper Treatment Correlation Energy Discretized State Resonant State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Ring, Prog. Part. Nucl. Phys. 37, 197 (1996).CrossRefGoogle Scholar
  2. 2.
    J. Dobaczewski, W. Nazarewicz, Philos. Trans. R. Soc. London, Ser. A 356, 2007 (1998).Google Scholar
  3. 3.
    T.T.S. Kuo, F. Krmpotic, Y. Tzeng, Phys. Rev. Lett. 78, 2708 (1997).CrossRefGoogle Scholar
  4. 4.
    J. Dobaczewski, W. Nazarewicz, T.R. Werner, J.F. Berger, C.R. Chinn, J. Dechargé, Phys. Rev. C 53, 2809 (1996).CrossRefGoogle Scholar
  5. 5.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, Berlin, 1980).Google Scholar
  6. 6.
    Jun-Qing Li, Zhong-Yu Ma, Bao-Qiu Chen, Yong Zhou, Phys. Rev. C 65, 064305 (2002).CrossRefGoogle Scholar
  7. 7.
    J. Dobaczewski, H. Flocard, J. Treiner, Nucl. Phys. A 422, 103 (1984).CrossRefGoogle Scholar
  8. 8.
    H. Kucharek, P.Ring, Z. Phys. A 339, 23 (1991).Google Scholar
  9. 9.
    N. Sandulescu, R.J. Liotta, R. Wyss, Phys. Lett. B 394, 6 (1997).CrossRefGoogle Scholar
  10. 10.
    N. Sandulescu, Nguyen Van Giai, R.J. Liotta, Phys. Rev. C 61, 061301(R) (2000).CrossRefGoogle Scholar
  11. 11.
    A.T. Kruppa, P.H. Heenen, R.J. Liotta, Phys. Rev. C 63 044324 (2001).Google Scholar
  12. 12.
    N. Sandulescu, L.S. Geng, H. Toki, G. Hillhouse, Phys. Rev. C 68 054323 (2003).Google Scholar
  13. 13.
    Li-Gang Cao, Zhong-Yu Ma, Phys. Rev. C 66, 024311 (2002).CrossRefGoogle Scholar
  14. 14.
    M. Del Estal, M. Centelles, X. Viñas, S.K. Patra, Phys. Rev. C 63, 044321 (2001).CrossRefGoogle Scholar
  15. 15.
    G.A. Lalazissis, J.König, P.Ring, Phys. Rev. C 55, 540 (1997).CrossRefGoogle Scholar
  16. 16.
    G.A. Lalazissis, S. Raman, P. Ring, At. Data Nucl. Data Tables 71, 1 (1999).CrossRefGoogle Scholar
  17. 17.
    Zhong-yu Ma, A. Wandelt, N.V. Giai, D. Vretenar, P. Ring, Nucl. Phys. A 686, 173 (2001).CrossRefGoogle Scholar
  18. 18.
    Zhong-yu Ma, A. Wandelt, N.V. Giai, D. Vretenar, P. Ring, Li-gang Cao, Nucl. Phys. A 703, 222 (2002).CrossRefGoogle Scholar
  19. 19.
    P. Ring, Zhong-yu Ma, N.V. Giai, A. Wandelt, D. Vretenar, Li-gang Cao, Nucl. Phys. A 694, 249 (2001).CrossRefzbMATHGoogle Scholar
  20. 20.
    Li-Gang Cao, Zhong-Yu Ma, Chin. Phys. Lett. 20, 1459 (2003).CrossRefGoogle Scholar
  21. 21.
    C.J. Horowitz, B.D. Serot, Nucl. Phys. A 368, 503 (1981).CrossRefGoogle Scholar
  22. 22.
    B.D. Serot, J.D. Walecka, Adv. Nucl. Phys. 16, 1 (1986). Google Scholar
  23. 23.
    J. Boguta, A.R. Bodmer, Nucl. Phys. A 292, 413 (1977).CrossRefGoogle Scholar
  24. 24.
    M. Grasso, N. Sandulescu, Nguyen Van Giai, R.J. Liotta, Phys. Rev. C 64, 064321 (2001).CrossRefGoogle Scholar
  25. 25.
    W. Greiner, Relativistic Quantum Mechanics - Wave Equation (Springer-Verlag, 1997).Google Scholar
  26. 26.
    P. Bonche, S. Levit, D. Vautherin, Nucl. Phys. A 427, 278 (1984).CrossRefGoogle Scholar
  27. 27.
    J. Meng, Phys. Rev. C 57, 1229 (1998).CrossRefGoogle Scholar
  28. 28.
    G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995).CrossRefGoogle Scholar
  29. 29.
    G.A. Lalazissis, D. Vretenar, P. Ring, Phys. Rev. C 57, 2294 (1998).CrossRefGoogle Scholar
  30. 30.
    M.M. Sharma, A.R. Farhan, S. Mythili, Phys. Rev. C 61, 054306 (2000).CrossRefGoogle Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2004

Authors and Affiliations

  1. 1.Institute of High Energy PhysicsChinese Academy of SciencesBeijingPRC
  2. 2.CCASTBeijing[:ECITY:] [:POSTCODE:]100080[:EPOSTCODE:], [:COUNTRY:]PRC[:ECOUNTRY:] and China Institute of Atomic Energy, [:CITY:]BeijingPRC

Personalised recommendations