Advertisement

Direct mass measurements of neutron-deficient xenon isotopes using the ISOLTRAP mass spectrometer

  • J. Dilling
  • F. Herfurth
  • A. Kellerbauer
  • G. Audi
  • D. Beck
  • G. Bollen
  • H. -J. Kluge
  • R. B. Moore
  • C. Scheidenberger
  • S. Schwarz
  • G. Sikler
  • the ISOLDE Collaboration
Article

Abstract.

The masses of the noble-gas Xe isotopes with 114≤A≤123 have been directly measured for the first time. The experiments were carried out with the ISOLTRAP triple trap spectrometer at the on-line mass separator ISOLDE/CERN. A mass resolving power of the Penning trap spectrometer of mm of close to a million was chosen resulting in an accuracy of δm ⩽ 13 keV for all investigated isotopes. Conflicts with existing, indirectly obtained, mass data by several standard deviations were found and are discussed. An atomic mass evaluation has been performed and the results are compared to information from laser spectroscopy experiments and to recent calculations employing an interacting boson model.

Keywords

Xenon Mass Measurement Atomic Mass Laser Spectroscopy Mass Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Iachello, A. Arima, The Interacting Boson Model (Cambridge University Press, Cambridge, 1987).Google Scholar
  2. 2.
    S. Schwarz, Nucl. Phys. A 693, 533 (2001).CrossRefGoogle Scholar
  3. 3.
    H. Raimbault-Hartmann, Nucl. Instrum. Methods B 126, 378 (1997).Google Scholar
  4. 4.
    G. Bollen, Nucl. Instrum. Methods A 368, 675 (1996).Google Scholar
  5. 5.
    F. Herfurth, Nucl. Instrum. Methods A 469, 254 (2001).Google Scholar
  6. 6.
    E. Kugler, Hyperfine Interact. 129, 23 (2000).CrossRefGoogle Scholar
  7. 7.
    G. Savard, Phys. Lett. A 158, 247 (1991).CrossRefGoogle Scholar
  8. 8.
    G. Gräff, H. Kalinowski, J. Traut, Z. Phys. A 297, 35 (1980).Google Scholar
  9. 9.
    K. Blaum, Eur. Phys. J. A 15, 245 (2002).Google Scholar
  10. 10.
    M. König, Int. J. Mass. Spectrom. Ion. Processes 142, 95 (1995).CrossRefGoogle Scholar
  11. 11.
    G. Bollen, Nucl. Phys. A 693, 3 (2001).CrossRefGoogle Scholar
  12. 12.
    E. Kugler, Nucl. Instrum. Methods B 70, 41 (1992).Google Scholar
  13. 13.
    M.P. Bradley, Phys. Rev. Lett. 83, 4510 (1999).CrossRefGoogle Scholar
  14. 14.
    A. Kellerbauer, Eur. Phys. J. D 22, 53 (2003).Google Scholar
  15. 15.
    G. Bollen, Phys. Rev. C 46, R2140 (1992).Google Scholar
  16. 16.
    D. Beck, Nucl. Instrum. Methods B 126, 374 (1997).Google Scholar
  17. 17.
    G. Audi, A.H. Wapstra, Nucl. Phys. A 595, 409 (1995).CrossRefGoogle Scholar
  18. 18.
    G. Audi, Ncul. Phys. A 729, 1 (2003).Google Scholar
  19. 19.
    W. Borchers, PhD Thesis, University of Mainz, 1989.Google Scholar
  20. 20.
    P. Möller, At. Data Nucl. Data Tables 59, 185 (1995).CrossRefGoogle Scholar
  21. 21.
    T.R. Werner, J. Dudek, At. Data Nucl. Data Tables 54, 1 (1995).CrossRefGoogle Scholar
  22. 22.
    P.F. Mantinca, W.B. Walters, Phys. Rev. C 53, R2586 (1996).Google Scholar
  23. 23.
    R. Fossion, Nucl. Phys. A 697, 703 (2002).CrossRefGoogle Scholar
  24. 24.
    F. Herfurth, Eur. Phys. J. A 15, 17 (2002).Google Scholar
  25. 25.
    H.B. Mathur, Phys. Rev. A 96, 126 (1975).Google Scholar
  26. 26.
    R.B. Moore, Bull. Am. Phys. Soc., 68 (1960).Google Scholar
  27. 27.
    L. Weestgard, Z. Phys. A 275, 127 (1975).Google Scholar
  28. 28.
    K. Sofia, Phys. Rev. C 24, 1615 (1981).CrossRefGoogle Scholar
  29. 29.
    R.F. Parry, PhD Thesis, University of California at Berkeley, 1983.Google Scholar
  30. 30.
    G.D. Alkazov, Z. Phys. A 344, 425 (1993).Google Scholar
  31. 31.
    E. Beck, Yellow Report CERN 70-30, Vol. 1, p. 353, 1970, unpublished.Google Scholar
  32. 32.
    F. Münnich, Nucl. Phys. A 224, 437 (1974).CrossRefGoogle Scholar
  33. 33.
    A. Wapstra, private communication.Google Scholar
  34. 34.
    T. Batsch, Yellow Report CERN 76-33, Vol. 1, p. 106, 1976, unpublished.Google Scholar
  35. 35.
    J.M. D’Auria, Yellow Report CERN 76-33, Vol. 1, p. 101, 1976, unpublished.Google Scholar
  36. 36.
    P. Hornshoj, Nucl. Phys. A 187, 599 (1972).CrossRefGoogle Scholar
  37. 37.
    R.S. Lee, Phys. Rev. C 32, 277 (1985).CrossRefGoogle Scholar
  38. 38.
    J.M. D’Auria, Nucl. Phys. A 301, 397 (1978).CrossRefGoogle Scholar
  39. 39.
    G.M. Gowdy, Phys. Rev. C 13, 1601 (1976).CrossRefGoogle Scholar
  40. 40.
    D.D. Bogdanov, Phys. Lett. A 71, 67 (1977).Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2004

Authors and Affiliations

  • J. Dilling
    • 1
    • 2
  • F. Herfurth
    • 3
  • A. Kellerbauer
    • 3
  • G. Audi
    • 4
  • D. Beck
    • 1
  • G. Bollen
    • 5
  • H. -J. Kluge
    • 1
  • R. B. Moore
    • 6
  • C. Scheidenberger
    • 1
  • S. Schwarz
    • 5
  • G. Sikler
    • 1
  • the ISOLDE Collaboration
    • 2
  1. 1.GSI DarmstadtDarmstadtGermany
  2. 2.TRIUMFVancouverCanada
  3. 3.Division EPCERNGeneva 23Switzerland
  4. 4.CSNSM-IN2P3-CNRSOrsay-CampusFrance
  5. 5.NSCL/MSUEast LansingUSA
  6. 6.Department of PhysicsMcGill UniversityMontrealCanada

Personalised recommendations