Advertisement

Nucleon-pole contributions in the \(J/\psi\rightarrow N\bar{N\pi}\), \(p\bar{p\eta}\), \(p\bar{p\eta^{\prime}}\) and \(p\bar{p\omega}\) decays

  • W.-H. Liang
  • P.-N. ShenEmail author
  • B.-S. Zou
  • A. Faessler
Article

Abstract.

Nucleon-pole contributions in the \(J/\psi\rightarrow N\bar{N}\pi\), \(p\bar{p}\eta\), \(p\bar{p}\eta^{\prime}\) and \(p\bar{p} \omega\) decays are re-studied. Different contributions due to PS-PS and PS-PV couplings in the \(\pi\)-N interaction and the effects of \(NN\pi\) form factors are investigated in the \(J/\psi\rightarrow N\bar{N}\pi\) decay channel. It is found that when the ratio of |F0|/|F M | takes a small value, without considering the \(NN\pi\) form factor, the difference between PS-PS and PS-PV couplings is negligible. However, when the \(NN\pi\) form factor is included, this difference is greatly enlarged. The resultant decay widths are sensitive to the form factors. As a conclusion, the nucleon-pole contribution as a background to the decay width is important in the \(J/\psi\rightarrow N\bar{N}\pi\) decay and must be considered. In the \(J/\psi\rightarrow N\bar{N}\eta\) and \(N\bar{N}\eta'\) decays, its contribution is smaller by 0.1% with respect to the data. In the \(J/\psi\rightarrow N\bar{N}\omega\) decay, it provides a rather important contribution without considering form factors. But the contribution is suppressed greatly when adding the off-shell form factors. Comparing these results with data will help us to select a proper form factor for such kind of decay.

Keywords

Form Factor Decay Width Decay Channel Proper Form Resultant Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.D. Burkert, Nucl. Phys. A 623, 59c (1997); Prog. Part. Nucl. Phys. 44, 273 (2000).CrossRefGoogle Scholar
  2. 2.
    N. Isgur, G. Karl, Phys. Lett. B 72, 109 (1977); Phys. Rev. D 23, 817 (1981).CrossRefGoogle Scholar
  3. 3.
    D. Faiman, W. Hendry, Phys. Rev. 173, 1720 (1968); 180, 1609 (1969).CrossRefGoogle Scholar
  4. 4.
    S. Capstick, P.R. Page, Phys. Rev. D 60, 111501 (1999); nucl-th/0008028.CrossRefGoogle Scholar
  5. 5.
    B.S. Zou, Nucl. Phys. A 675, 167 (2000); 684, 330 (2001).CrossRefGoogle Scholar
  6. 6.
    B.S. Zou, H.B. Li, BES Collaboration, in Excited Nucleons and Hadronic Structure, Proceedings of NSTAR2000 Conference at Jefferson Lab, edited by V. Burkert et al. (World Scientific, 2001) p. 155, hep-ph/0004220; H.B. Li et al. , Nucl. Phys. A 675, 189 (2000).CrossRefGoogle Scholar
  7. 7.
    R. Sinha, Susumu Okubo, Phys. Rev. D 30, 2333 (1984).CrossRefGoogle Scholar
  8. 8.
    DM2 Collaboration, Nucl. Phys. B 292, 653 (1997).Google Scholar
  9. 9.
    Particle Data Group, Euro. Phys. J. C 15, 1 (2000).Google Scholar
  10. 10.
    R. Machleidt, K. Holinde, Ch. Elster, Phys. Rep. 149, 1 (1987); R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989); G. Holzwarth, R. Machleidt, Phys. Rev. C 55, 1088 (1997).Google Scholar
  11. 11.
    F. Gross, J.W. Van Orden, K. Holinde, Phys. Rev. C 45, 2094 (1992); 41, R1909 (1990).CrossRefGoogle Scholar
  12. 12.
    F. Gross, Y. Surya, Phys. Rev. C 47, 703 (1993).CrossRefGoogle Scholar
  13. 13.
    B.C. Pearce, B.K. Jennings, Nucl. Phys. A 528, 655 (1991).CrossRefGoogle Scholar
  14. 14.
    C. Schütz, J.W. Durso, K. Holinde, J. Speth, Phys. Rev. C 49, 2671 (1994).CrossRefGoogle Scholar
  15. 15.
    T. Sato, T.-S.H. Lee, Phys. Rev. C 54, 2660 (1996).CrossRefGoogle Scholar
  16. 16.
    Q. Zhao, Z. Li, C. Bennhold, Phys. Rev. C 58, 2393 (1998); Q. Zhao, J.-P. Didelez, M. Guidal, B. Saghai, Nucl. Phys. A 660, 323 (1999); Q. Zhao, B. Saghai, J.S. Al-Khalili, Phys. Lett. B 509, 231 (2001).CrossRefGoogle Scholar
  17. 17.
    Q. Haider, L.C. Liu, J. Phys. G 22, 1187 (1996); L.C. Liu, W.X. Ma, J. Phys. G 26, L59 (2000).CrossRefGoogle Scholar
  18. 18.
    L.L. Frankfurt, M. Strikman, Z. Phys. A 334, 343 (1989).Google Scholar
  19. 19.
    V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994).CrossRefGoogle Scholar
  20. 20.
    H. Haberzettl, C. Bennhold, T. Mart, T. Feuster, Phys. Rev. C 58, R40 (1998).Google Scholar
  21. 21.
    Y. Oh, A. Titov, T.-S.H. Lee, Phys. Rev. C 63, 25201 (2001).CrossRefGoogle Scholar
  22. 22.
    T. Yoshimoto, T. Sato, M. Arima, T.-S.H. Lee, Phys. Rev. C 61, 65203 (2000).CrossRefGoogle Scholar
  23. 23.
    Y. Oh, A.I. Titov, T.-S.H. Lee, presented at the NSTAR 2001 Workshop on the Physics of Excited Nucleons, Mainz, Germany, 7-10 March 2001, nucl-th/0104046.Google Scholar
  24. 24.
    G.F. Chew, Phys. Rev. 95, 1669 (1954).CrossRefGoogle Scholar
  25. 25.
    R.D. Peccei, Phys. Rev. 176, 1812 (1968).CrossRefGoogle Scholar
  26. 26.
    C. Lee, S.N. Yang, T.-S.H. Lee, J. Phys. G 17, L131 (1991).Google Scholar
  27. 27.
    P.F.A. Goudsmit, H.J. Leisi, E. Mastinos, Phys. Lett. B 299, 6 (1993); Report No. ETHZ-IMP PR/91-6, 1991.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • W.-H. Liang
    • 1
    • 3
  • P.-N. Shen
    • 2
    • 1
    • 4
    Email author
  • B.-S. Zou
    • 4
    • 1
    • 2
  • A. Faessler
    • 5
  1. 1.Institute of High Energy PhysicsChinese Academy of SciencesBeijingPRC
  2. 2.China Center of Advanced Science and Technology (World Laboratory)BeijingPRC
  3. 3.Department of PhysicsGuangxi Normal UniversityGuilinPRC
  4. 4.Center of Theoretical Nuclear PhysicsNational Laboratory of Heavy Ion AcceleratorLanzhouPRC
  5. 5.Institut für Theoretische PhysikUniversität TübingenTübingenGermany

Personalised recommendations