Advertisement

Light clusters in nuclear matter of finite temperature

  • M. BeyerEmail author
  • S. Strauss
  • P. Schuck
  • S. A. Sofianos
Article

Abstract.

We investigate properties and the distribution of light nuclei (A≤4) in symmetric nuclear matter of finite temperature within a microscopic framework. For this purpose we have solved few-body Alt-Grassberger-Sandhas-type equations for quasi-nucleons that include self-energy corrections and Pauli blocking in a systematic way. In a statistical model we find a significant influence in the composition of nuclear matter if medium effects are included in the microscopic calculation of nuclei. If multiplicities are frozen out at a certain time (or volume), we expect significant consequences for the formation of light fragments in a heavy ion collision. As a consequence of the systematic inclusion of medium effects, the ordering of multiplicities becomes opposite to the law-of-mass action of ideal components. This is necessary to explain the large abundance of α-particles in a heavy ion collision that are otherwise largely suppressed in an ideal equilibrium scenario.

Keywords

Statistical Model Elementary Particle Significant Influence Medium Effect Nuclear Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Danielewicz, G.F. Bertsch, Nucl. Phys. A 533, 712 (1991).CrossRefGoogle Scholar
  2. 2.
    P. Danielewicz, Q. Pan, Phys. Rev. C 46, 2002 (1992).CrossRefGoogle Scholar
  3. 3.
    H. Stöcker, W. Greiner, Phys. Rep. 137, 277 (1986).CrossRefGoogle Scholar
  4. 4.
    C. Fuchs, H.H. Wolter, Nucl. Phys. A 589, 732 (1995).CrossRefGoogle Scholar
  5. 5.
    M. Beyer, C. Kuhrts, G. Röpke, P.D. Danielewicz, Phys. Rev. C 63, 034605 (2001).CrossRefGoogle Scholar
  6. 6.
    J. Aichelin, Phys. Rep. 202, 233 (1991). CrossRefGoogle Scholar
  7. 7.
    G. Peilert , Phys. Rev. C 46, 1457 (1992).CrossRefGoogle Scholar
  8. 8.
    R. Nebauer, J. Aichelin, Nucl. Phys. A 650, 65 (1999)CrossRefGoogle Scholar
  9. 9.
    INDRA Collaboration (D. Gorio ), Eur. Phys. J. A 7, 245 (2000), and references therein.Google Scholar
  10. 10.
    INDRA Collaboration (S. Hudan ), Phys. Rev. C 67, 064613 (2003).CrossRefGoogle Scholar
  11. 11.
    INDRA Collaboration (B. Borderie ), Phys. Lett. B 388, 224 (1996).CrossRefGoogle Scholar
  12. 12.
    INDRA Collaboration (B. Borderie ), Phys. Lett. B 353, 27 (1995).CrossRefGoogle Scholar
  13. 13.
    A.Z. Mekjan, Phys. Rev. C 17, 1051 (1978).CrossRefGoogle Scholar
  14. 14.
    R.K. Tripathi, L.W. Townsend, Phys. Rev. C 50, R7 (1994).Google Scholar
  15. 15.
    J.P. Bondorf, A.S. Botvina, A.S. Iljinov, I.N. Mishustin, K. Sneppen, Phys. Rep. 257, 133 (1995).CrossRefGoogle Scholar
  16. 16.
    M. Beyer, W. Schadow, C. Kuhrts, G. Röpke, Phys. Rev. C 60, 034004 (1999).CrossRefGoogle Scholar
  17. 17.
    M. Beyer, S.A. Sofianos, C. Kuhrts, G. Röpke, P. Schuck, Phys. Lett. B 488, 247 (2000).CrossRefGoogle Scholar
  18. 18.
    Chr. Kuhrts, PhD Thesis: ‘‘Deuteron production in heavy ion reactions’’, Rostock, 2000.Google Scholar
  19. 19.
    For a textbook treatment see, e.g., L.P. Kadanoff, G. Baym, Quantum Theory of Many-Particle Systems (Mc Graw-Hill, New York, 1962)Google Scholar
  20. 20.
    See, e.g., J. Dukelsky, G. Röpke, P. Schuck, Nucl. Phys. A 628, 17 (1998).CrossRefGoogle Scholar
  21. 21.
    M. Beyer, G. Röpke, A. Sedrakian, Phys. Lett. B 376, 7 (1996).CrossRefGoogle Scholar
  22. 22.
    J. Eichler, T. Marumori, K. Takada, Prog. Theor. Phys. 40, 60 (1968).Google Scholar
  23. 23.
    P. Schuck, F. Villars, P. Ring, Nucl. Phys. A 208, 302 (1973).CrossRefGoogle Scholar
  24. 24.
    M. Schmidt, G. Röpke, H. Schulz, Ann. Phys. (N.Y.) 202, 57 (1990).CrossRefGoogle Scholar
  25. 25.
    E.O. Alt, P. Grassberger, W. Sandhas, Nucl. Phys. B 2, 167 (1967).CrossRefGoogle Scholar
  26. 26.
    W. Sandhas, Acta Phys. Austriaca, Suppl. XIII, 679 (1974).Google Scholar
  27. 27.
    E.O. Alt, P. Grassberger, W. Sandhas, Report E4-6688, JINR, Dunba 1972 and in Few Particle Problems in The Nuclear Interaction, edited by I. Slaus (North Holland, Amsterdam 1972) p. 299.Google Scholar
  28. 28.
    W. Sandhas, Czech. J. Phys. B 25, 251 (1975).Google Scholar
  29. 29.
    H.A. Bethe, J. Goldstone, Proc. R. Soc. A 238, 551 (1957).zbMATHGoogle Scholar
  30. 30.
    S. Sofianos, N.J. McGurk, H. Fiedeldey, Nucl. Phys. A 318, 295 (1979)CrossRefGoogle Scholar
  31. 31.
    Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).CrossRefzbMATHGoogle Scholar
  32. 32.
    R.A. Malfliet, J. Tjon, Nucl. Phys. A 127, 161 (1969).CrossRefGoogle Scholar
  33. 33.
    S. Mattiello, diploma thesis: ‘‘Production of three-body clusters in asymetric matter’’ (in Italian), Trento, 2000, unpublished.Google Scholar
  34. 34.
    M. Beyer, S.A. Sofianos, J. Phys. G 27, 2081 (2001).Google Scholar
  35. 35.
    V.N. Efimov, Yad. Fiz. 12, 1080 (1970) (Sov. J. Nuc. Phys. 12, 589 (1971)).Google Scholar
  36. 36.
    A. Schnell, PhD Thesis, Rostock, 1999.Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2004

Authors and Affiliations

  • M. Beyer
    • 1
    Email author
  • S. Strauss
    • 1
  • P. Schuck
    • 2
  • S. A. Sofianos
    • 3
  1. 1.Fachbereich PhysikUniversität RostockRostockGermany
  2. 2.Institut de Physique NucléaireOrsay CedexFrance
  3. 3.Physics DepartmentUniversity of South AfricaPretoriaSouth Africa

Personalised recommendations