Advertisement

Spectroscopy of pentaquark states

  • R. Bijker
  • M. M. GianniniEmail author
  • E. Santopinto
Article

Abstract.

We construct a complete classification of qqqq¯q pentaquark states in terms of the spin-flavour SU(6) representations. We find that only some definite SU(3) representations are allowed, that is singlets, octects, decuplets, anti-decuplets, 27-plets and 35-plets. The latter three contain exotic states, which cannot be constructed from three quarks only. This complete classification is general and model independent and is useful both for model builders and experimentalists. The mass spectrum is obtained from a Gürsey-Radicati type mass formula, whose coefficients have been determined previously by a study of qqq-baryons. The ground-state pentaquark, which is identified with the recently observed Θ+(1540) state, is predicted to be an isosinglet anti-decuplet state. Its parity depends on the interplay between the spin-flavour and orbital contributions to the mass operator.

Keywords

Spectroscopy Mass Spectrum Elementary Particle Type Mass Mass Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Nakano, Phys. Rev. Lett. 91, 012002 (2003).CrossRefGoogle Scholar
  2. 2.
    V.V. Barmin, Phys. At. Nucl. 66, 1715 (2003).CrossRefGoogle Scholar
  3. 3.
    J. Barth, Phys. Lett. B 572, 127 (2003).CrossRefGoogle Scholar
  4. 4.
    S. Stepanyan, Phys. Rev. Lett. 91, 252001 (2003)CrossRefGoogle Scholar
  5. 5.
    A.E. Asratyan, A.G. Dolgolenko, M.A. Kubantsev, Phys. At. Nucl. 67, 682 (2004).CrossRefGoogle Scholar
  6. 6.
    A. Airapetian, Phys. Lett. B 585, 213 (2004).CrossRefGoogle Scholar
  7. 7.
    A. Aleev, hep-ex/0401024.Google Scholar
  8. 8.
    C. Alt, Phys. Rev. Lett. 92, 042003 (2004).CrossRefGoogle Scholar
  9. 9.
    H.J. Lipkin, in ‘‘Hadrons, Quarks and Gluons’’, in Proceedings of the Hadronic Session of the XXIInd Rencontre de Moriond, edited by J. Tran Thanh Van (Editions Frontières, Gif-Sur-Yvette, France, 1987) p. 691Google Scholar
  10. 10.
    H. Högaasen, P. Sorba, Nucl. Phys. B 145, 119 (1978)CrossRefGoogle Scholar
  11. 11.
    A.V. Manohar, Nucl. Phys. B 248, 19 (1984).CrossRefGoogle Scholar
  12. 12.
    M. Chemtob, Nucl. Phys. B 256, 600 (1985).CrossRefGoogle Scholar
  13. 13.
    M. Praszalowicz, in Skyrmions and Anomalies, edited by M. Jezabek, M. Praszalowicz (World Scientific, 1987) pp. 112-131Google Scholar
  14. 14.
    D. Diakonov, V. Petrov, M. Polyakov, Z. Phys. A 359, 305 (1997).CrossRefGoogle Scholar
  15. 15.
    D. Borisyuk, M. Faber, A. Kobushkin, hep-ph/0307370.Google Scholar
  16. 16.
    H. Weigel, Eur. Phys. J. A 2, 391 (1998)CrossRefGoogle Scholar
  17. 17.
    B.K. Jennings, K. Maltman, hep-ph/0308286.Google Scholar
  18. 18.
    Fl. Stancu, Phys. Rev. D 58, 111501 (1998)CrossRefGoogle Scholar
  19. 19.
    C. Helminen, D.O. Riska, Nucl. Phys. A 699, 624 (2002).CrossRefGoogle Scholar
  20. 20.
    S. Capstick, P.R. Page, W. Roberts, Phys. Lett. B 570, 185 (2003)CrossRefGoogle Scholar
  21. 21.
    A. Hosaka, Phys. Lett. B 571, 55 (2003)CrossRefGoogle Scholar
  22. 22.
    C.E. Carlson, Ch.D. Carone, H.J. Kwee, V. Nazaryan, Phys. Lett. B 573, 101 (2003)CrossRefGoogle Scholar
  23. 23.
    L.Ya. Glozman, Phys. Lett. B 575, 18 (2003).CrossRefGoogle Scholar
  24. 24.
    R.A. Williams, P. Guèye, nucl-th/0308058.Google Scholar
  25. 25.
    Y. Oh, H. Kum, S.H. Lee, hep-ph/0310117Google Scholar
  26. 26.
    M. Karliner, H.J. Lipkin, Phys. Lett. B 575, 249 (2003)CrossRefGoogle Scholar
  27. 27.
    Shin-Lin Zhu, Phys. Rev. Lett. 91, 232002 (2003)CrossRefGoogle Scholar
  28. 28.
    T.D. Cohen, R.F. Lebed, Phys. Lett. B 578, 150 (2004)CrossRefGoogle Scholar
  29. 29.
    F. Csikor, Z. Fodor, S.D. Katz, T.G. Kovács, JHEP 0311, 070 (2003)CrossRefGoogle Scholar
  30. 30.
    M. Genovese, J.-M. Richard, Fl. Stancu, S. Pepin, Phys. Lett. B 625, 171 (1998)CrossRefGoogle Scholar
  31. 31.
    D. Borisyuk, M. Faber, A. Kobushkin, hep-ph/0312213.Google Scholar
  32. 32.
    R. Bijker, M.M. Giannini, E. Santopinto, Phys. Lett. B 595, 260 (2004), hep-ph/0403029CrossRefGoogle Scholar
  33. 33.
    R.P. Feynman, M. Kislinger, F. Ravndal, Phys. Rev. D 3, 2706 (1971).CrossRefGoogle Scholar
  34. 34.
    N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978)CrossRefGoogle Scholar
  35. 35.
    R. Bijker, F. Iachello, A. Leviatan, Ann. Phys. (N.Y) 236, 69 (1994)CrossRefGoogle Scholar
  36. 36.
    E. Santopinto, F. Iachello, M.M. Giannini, Eur. Phys. J. A 1, 307 (1998).Google Scholar
  37. 37.
    See, e.g., M. Gell-Mann, Y. Ne’eman, The Eightfold Way (W.A. Benjamin, Inc., New York, 1964).Google Scholar
  38. 38.
    F. Gürsey, L.A. Radicati , Phys. Rev. Lett. 13, 173 (1964).CrossRefGoogle Scholar
  39. 39.
    M.M. Giannini, E. Santopinto, A. Vassallo, to be published.Google Scholar

Copyright information

© Società Italiana di Fisica and Springer-Verlag 2004

Authors and Affiliations

  1. 1.Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de MexicoMexico, D.F.Mexico
  2. 2.Dipartimento di Fisica dell’Università di GenovaINFN, Sezione di GenovaItaly

Personalised recommendations