Advertisement

Fission barriers of heavy nuclei within a microscopic approach

  • L. BonneauEmail author
  • P. Quentin
  • D. Samsœn
Article

Abstract.

The fission barriers of twenty-six isotopes of Thorium, Uranium, Plutonium, Californium, Fermium and Nobelium have been microscopically calculated up to and beyond the second saddle point within a constrained Hartree-Fock plus pairing approach. The Skyrme density-dependent effective force in its SkM* parametrization --rather well suited to the description of fission barriers-- has been used in the particle-hole channel, whereas the usual HF plus BCS formalism with either a seniority force or a delta force has been implemented to treat pairing correlations. The energy correction due to the rotational zero-point motion has been approximately taken into account and the effects of triaxial and reflection asymmetric deformations have been investigated. When known, the experimental fission barrier heights are reproduced within about 1-2MeV.

Keywords

Uranium Thorium Plutonium Barrier Height Heavy Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V.M. Strutinsky, Nucl. Phys. A 95, 420 (1967); 122, 1 (1968).CrossRefGoogle Scholar
  2. 2.
    P. Möller, J.R. Nix, in Proceedings of the IAEA Symposium on Physics and Chemistry of Fission, Rochester, 1973, Vol. I (IAEA, Vienna, 1974) p. 103.Google Scholar
  3. 3.
    P. Möller, D.G. Madland, A.J. Sierk, A. Iwamoto, Nature 409, 785 (2001).CrossRefGoogle Scholar
  4. 4.
    J. Maruhn, W. Greiner, D. Drechsel, in Proceedings of the IAEA Symposium on Physics and Chemistry of Fission, Rochester, 1973, Vol. I (IAEA, Vienna, 1974) p. 569.Google Scholar
  5. 5.
    M. Brack, J. Damgaard, A.S. Jensen, H.C. Pauli, V.M. Strutinsky, C.W. Wong, Rev. Mod. Phys. 44, 320 (1972).CrossRefGoogle Scholar
  6. 6.
    V.V. Pashkevich, Nucl. Phys. A 133, 400 (1969).CrossRefGoogle Scholar
  7. 7.
    S.E. Larsson, I. Ragnarsson, S.G. Nilsson, Phys. Lett. B 38, 269 (1972).CrossRefGoogle Scholar
  8. 8.
    U. Götz, H.C. Pauli, K. Junker, Phys. Lett. B 39, 436 (1972).CrossRefGoogle Scholar
  9. 9.
    V.V. Pashkevich, in Proceedings of the 15thDivisional Conference on Low-Energy Nuclear Dynamics, St. Petersburg, Russia, 1995 (World Scientific, Singapore, 1995) p. 161.Google Scholar
  10. 10.
    H. Flocard, P. Quentin, D. Vautherin, M. Vénéroni, A.K. Kerman, Nucl. Phys. A 231, 176 (1974).CrossRefGoogle Scholar
  11. 11.
    J. Bartel, P. Quentin, M. Brack, C. Guet, H.-B. Håkansson, Nucl. Phys. A 386, 79 (1982).CrossRefGoogle Scholar
  12. 12.
    J.-F. Berger, M. Girod, D. Gogny, Nucl. Phys. A 502, 85c (1989).CrossRefGoogle Scholar
  13. 13.
    H. Goutte, J.F. Berger, private communication.Google Scholar
  14. 14.
    J.H. Huizenga, R. Vandenbosch, in Nuclear Fission (Academic Press, New York, 1973).Google Scholar
  15. 15.
    S. Bjørnholm, J. Lynn, Rev. Mod. Phys. 52, 725 (1980).CrossRefGoogle Scholar
  16. 16.
    H. Weigmann, in The Nuclear Fission, edited by C. Wagemans (CRC Press, Boca Raton, 1991) Chapt. II.Google Scholar
  17. 17.
    G.N. Smirenkin, IAEA Report INDC(CCP)-359 (1993).Google Scholar
  18. 18.
    K. Rutz, J. Maruhn, P.G. Reinhard, W. Greiner, Nucl. Phys. A 590, 680 (1995).CrossRefGoogle Scholar
  19. 19.
    A.V. Affanassyev, P. Ring, Acta Phys. Hung. 13, 139 (2001).CrossRefGoogle Scholar
  20. 20.
    M. Warda, J.L. Egido, L.M. Robledo, K. Pomorski, Phys. Rev. C 66, 014310 (2002).CrossRefGoogle Scholar
  21. 21.
    H. Flocard, P. Quentin, A.K. Kerman, D. Vautherin, Nucl. Phys. A 203, 433 (1973).CrossRefGoogle Scholar
  22. 22.
    D. Samsœn, P. Quentin, J. Bartel, Nucl. Phys. A 652, 34 (1999).CrossRefGoogle Scholar
  23. 23.
    H. Krivine, O. Bohigas, J. Treiner, Nucl. Phys. A 366, 155 (1980).CrossRefGoogle Scholar
  24. 24.
    M. Beiner, H. Flocard, N. Van Giai, P. Quentin, Nucl. Phys. A 238, 29 (1975).CrossRefGoogle Scholar
  25. 25.
    M. Brack, C. Guet, H.-B. Håkansson, Phys. Rep. 123, 275 (1985).CrossRefGoogle Scholar
  26. 26.
    J. Libert, M. Meyer, P. Quentin, Phys. Rev. C 25, 586 (1982).CrossRefGoogle Scholar
  27. 27.
    N. Pillet, P. Quentin, J. Libert, Nucl. Phys. A 697, 141 (2002).CrossRefzbMATHGoogle Scholar
  28. 28.
    M. Meyer, J. Libert, P. Quentin, Phys. Lett. B 95, 175 (1980).CrossRefGoogle Scholar
  29. 29.
    H. Laftchiev, D. Samsœn, P. Quentin, J. Piperova, Eur. Phys. J. A 12, 155 (2001).CrossRefGoogle Scholar
  30. 30.
    T.L. Ha, P. Quentin, D. Strottman, in preparation.Google Scholar
  31. 31.
    S.J. Krieger, P. Bonche, H. Flocard, P. Quentin, M.S. Weiss, Nucl. Phys. A 517, 275 (1990).CrossRefGoogle Scholar
  32. 32.
    H.J. Lipkin, Ann. Phys. (N.Y.) 9, 272 (1960).zbMATHGoogle Scholar
  33. 33.
    I. Kelson, Y. Shoshani, Phys. Lett. B 40, 58 (1972).CrossRefGoogle Scholar
  34. 34.
    S.D. Belyaev, Nucl. Phys. 24, 322 (1961), and references quoted therein.CrossRefGoogle Scholar
  35. 35.
    D.W.L. Sprung, S.G. Lie, M. Valliéres, P. Quentin, Nucl. Phys. A 326, 37 (1979).CrossRefGoogle Scholar
  36. 36.
    D.J. Thouless, J.G. Valatin, Nucl. Phys. 31, 211 (1962).CrossRefzbMATHGoogle Scholar
  37. 37.
    J. Libert, M. Girod, J.P. Delaroche, Phys. Rev. C 60, 054301 (1999).CrossRefGoogle Scholar
  38. 38.
    P. Quentin, H. Lafchiev, D. Samsœn, I.N. Mikhaïlov, Phys. Rev. C 69, 054315 (2004).CrossRefGoogle Scholar
  39. 39.
    M.J. Giannoni, P. Quentin, Phys. Rev. C 21, 2076 (1980).CrossRefGoogle Scholar
  40. 40.
    P. Ring, P. Schuck, in The Nuclear Many-Body Problem (Springer Verlag, 1980) Chapt. 11.Google Scholar
  41. 41.
    W.H. Bassichis, A.K. Kerman, J.P. Svenne, Phys. Rev. 160, 746 (1967).CrossRefGoogle Scholar
  42. 42.
    H. Flocard, P. Quentin, D. Vautherin, M. Veneroni, A.K. Kerman, Nucl. Phys. A 231, 176 (1974).CrossRefGoogle Scholar
  43. 43.
    P. Reiter et al. , Phys. Rev. Lett. 82, 509 (1999).Google Scholar
  44. 44.
    J.L. Egido, L.M. Robledo, Phys. Rev. Lett. 85, 1198 (2000).CrossRefGoogle Scholar
  45. 45.
    T. Duguet, P. Bonche, P.H. Heenen, Nucl. Phys. 679, 427 (2001).CrossRefGoogle Scholar
  46. 46.
    H. Laftchiev, D. Samsœn, P. Quentin, J. Piperova, Eur. Phys. J. A 12, 155 (2001).CrossRefGoogle Scholar
  47. 47.
    D. Hoffman, Nucl. Phys. A 502, 21c (1989).CrossRefGoogle Scholar
  48. 48.
    H.X. Zhang, T.R. Yeh, H. Lancman, Phys. Rev. C 34, 1397 (1986).CrossRefGoogle Scholar
  49. 49.
    J. Blons, B. Fabbro, C. Mazur, D. Paya, M. Ribrag, Y. Patin, Nucl. Phys. A 477, 231 (1988).CrossRefGoogle Scholar
  50. 50.
    P.H. Heenen, private communication.Google Scholar
  51. 51.
    P. Bonche, S.J. Krieger, M.S. Weiss, J. Dobaczewski, H. Flocard, P.-H. Heenen, Phys. Rev. Lett. 66, 871 (1991).CrossRefGoogle Scholar
  52. 52.
    I.N. Mikhaïlov, P. Quentin, Phys. Lett. B 462, 7 (1999).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Centre d’Etudes Nucléaires de Bordeaux-GradignanCNRS-IN2P3 and Université Bordeaux-IGradignanFrance

Personalised recommendations