Advertisement

The Binary Cascade

Nucleon nuclear reactions
  • G. Folger
  • V. N. Ivanchenko
  • J. P. WellischEmail author
Article

Abstract.

The Binary Cascade introduces a novel approach towards intra-nuclear cascade calculations. Like many QMD codes, it uses a detailed 3-dimensional model of the nucleus, and is based exclusively on binary scattering between reaction participants and nucleons within this nuclear model. Like a classical cascade, it uses optical potentials to describe the time evolution of particles passing through the nuclear medium. In the present paper we introduce the model, and investigate its predictive power for hadron spectra in nucleon nuclear reactions final states.

Keywords

Time Evolution Predictive Power Nuclear Reaction Optical Potential Nuclear Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.G. Mashnik, A.J. Sierk, J. Nucl. Sci. Tech. S2, 720 (2002); T.A. Gabriel, ORNL/TM-9727, Proceedings of LEP Experimenters’ Workshop on Shower Simulation, Geneva, Switzerland, January 29-31, 1985; J. Cugnon, C. Volant, S. Vuillier, Nucl. Phys. A 620, 475 (1997); Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba, Phys. Rev. C 61, 024901 (2000); G. Peter, D. Behrens, C.C. Noack, Phys. Rev. C 49, 3253 (1994); Hai-Qiao Wang, Xu Cai, Yong Liu, High Energy Phys. Nucl. Phys. 16, 101 (1992); A.S. Ilinov, A.B. Botvina, E.S. Golubeva, I.A. Pshenichnov, Sov. J. Nucl. Phys. 55, 734 (1992); A.V. Dementev, N.M. Sobolevsky, Nucl. Tracks Radiat. Meas. 30, 553 (1999); A. Fasso et al. , SLAC-REPRINT-1997-090 prepared for the 3rd Workshop on Simulating Accelerator Radiation Environments (SARE3), Tsukuba, Japan, 7-9 May 1997; D.V. Gorbatkov, V.P. Kryuchkov, Nucl. Instrum. Meth. A 374, 95 (1996); J.F. Briesmeister, LA-7396-M, Rev. 2 and citations therein.Google Scholar
  2. 2.
    M. Bleicher et al. , J. Phys. G 25, 1859 (1999); H. Sorge, Phys. Rev. C 52, 3291 (1995); K. Niita et al. , Phys. Rev. C 52, 2620 (1995); C. Hartnack, PhD Thesis, University of Frankfurt (1993); GSI Report 93-05; Jörg Aichelin, Phys. Rep. 202, 233 (1991).Google Scholar
  3. 3.
    J.P. Wellisch, Comput. Phys. Commun. 140, 65 (2001).CrossRefzbMATHGoogle Scholar
  4. 4.
    GEANT4 Collaboration (S. Agostinelli et al. ), Nucl. Instrum. Meth. A 506, 250 (2003).Google Scholar
  5. 5.
    Particle Data Group Collaboration (K. Hagiwara et al. ), Phys. Rev. D 66, 1 (2002).Google Scholar
  6. 6.
    CERN High Energy Analysis Group records, preprint denominations CERN-HERA-YY. For example, E. Bracci, C. Burichetti, J.P. Droulez, E. Flaminio, C. Preti, Compilation of Differential Cross-Sections. Pi Induced Reactions.Google Scholar
  7. 7.
    V. Lara, J.P. Wellisch, published in Annecy 2000, Proceedings of the IX International Conference on Calorimetry in High Energy Physics, Annecy, France, 9-14 October, 2000, Frascati Phys. Ser., Vol. XXI (2001) p. 449.Google Scholar
  8. 8.
    M.E. Grypeos, G.A. Lalazissis, S.E. Massen, C.P. Panos, J. Phys. G 17, 1093 (1991).CrossRefGoogle Scholar
  9. 9.
    L.R.B. Elton, Nuclear Sizes (Oxford University Press, Oxford, 1961).Google Scholar
  10. 10.
    A. DeShalit, H. Feshbach, Theoretical Nuclear Physics, Vol. 1: Nuclear Structure (Wyley, 1974).Google Scholar
  11. 11.
    K. Stricker, H. McManus, J.A. Carr, Nuclear scattering of low energy pions, Phys. Rev. C 19, 929 (1979).CrossRefGoogle Scholar
  12. 12.
    M. Bleicher et al. , J. Phys. G 25, 1859 (1999).Google Scholar
  13. 13.
    R.A. Arndt, I.I. Strakovsky, R.L. Workman, Int. J. Mod. Phys. A 18, 449 (2003).CrossRefGoogle Scholar
  14. 14.
    G.F. Bertsch, S. Das Gupta, Phys. Rep. 160, 189 (1988); W. Cassing, U. Mosel, Prog. Part. Nucl. Phys. 25, 235 (1990); T. Maruyama, W. Cassing, U. Mosel, S. Teis, Prog. Theor. Phys. Suppl. 120, 283 (1995).CrossRefGoogle Scholar
  15. 15.
    M.M. Meier et al. , Differential neutron production cross sections for 256-MeV protons, Nucl. Sci. Eng. 110, 289 (1992).Google Scholar
  16. 16.
    J. Cugnon, C. Volant, S. Vuillier, Nucl. Phys. A 620, 475 (1997).CrossRefGoogle Scholar
  17. 17.
    M.M. Meier et al. , Differential neutron production cross sections and neutron yields from stopping-length targets for 113-MeV protons, Nucl. Sci. Eng. 102, 310 (1989).Google Scholar
  18. 18.
    W.B. Amian et al. , Differential neutron production cross sections for 597-MeV protons, Nucl. Sci. Eng. 115, 1 (1993).Google Scholar
  19. 19.
    W.B. Amian et al. , Differential neutron production cross sections for 800-MeV protons, Nucl. Sci. Eng. 112, 78 (1992).Google Scholar
  20. 20.
    V. Ivanchenko et al. , The GEANT4 hadronic verification suite for the cascade energy region. Talk given at the Conference for Computing in High-Energy and Nuclear Physics (CHEP03), La Jolla, CA, USA, 24-28 March 2003. e-Print Archive: physics/0306016.Google Scholar
  21. 21.
    EXFOR database. http://www.nea.fr/html/dbdata/x4/ welcome.htmlGoogle Scholar
  22. 22.
    J.F. Crawford et al. , Measurement of cross sections and asymmetry parameters for the production of charged pions from various nuclei by 585-MeV protons, Phys. Rev. C 22, 1184 (1980).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.CERNGeneva 23Switzerland

Personalised recommendations