Advertisement

Structures of rotating traditional neutron stars and hyperon stars in the relativistic \(\sigma-\omega\) model

  • De-hua Wen
  • Wei Chen
  • Xian-ju Wang
  • Bao-quan Ai
  • Guo-tao Liu
  • Dong-qiao Dong
  • Liang-gang LiuEmail author
Article

Abstract.

The influence of rotation on the total masses and radii of neutron stars is calculated by Hartle’s slow-rotation formalism, while the equation of state is considered in a relativistic \(\sigma\)-\(\omega\) model. As the changes of the mass and radius of a real neutron star caused by rotation are very small in comparison with the total mass and radius, one can see that Hartle’s approximate method is rational to deal with the rotating neutron stars. If three property values, mass, radius and period, are observed for the same neutron star, then the EOS of this neutron star could be decided entirely.

Keywords

Total Mass Neutron Star Relativistic Model Approximate Method Rotate Neutron Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Stergioulas, http:/ /xxx.lanl.gov/ abs/gr-qc/9805012.Google Scholar
  2. 2.
    H. Heiselberg, http:/ /xxx.lanl.gov/abs/astro-ph/ 0201465.Google Scholar
  3. 3.
    F. Weber, http:/ /xxx.lanl.gov/abs/astro-ph/0207053.Google Scholar
  4. 4.
    J.R. Oppenheimer, G.M. Volkoff, Phys. Rev. 55, 374 (1939).CrossRefGoogle Scholar
  5. 5.
    E.M. Butterworth, J.R. Ipser, Astrophys. J. 204, 200 (1976).CrossRefGoogle Scholar
  6. 6.
    H. Komatsu, Y. Eriguchi, I. Hachisu, Mon. Not. R. Astron. Soc. 239, 153 (1989).Google Scholar
  7. 7.
    J.B. Hartle, Astrophys. J. 150, 1005 (1967).CrossRefGoogle Scholar
  8. 8.
    J.B. Hartle, K.S. Thorne, Astrophys. J. 153, 807 (1968).CrossRefGoogle Scholar
  9. 9.
    H.Y. Jia, B.X. Sun, J. Meng, E.G. Zhao, Chin. Phys. Lett. 18, 1571 (2001).CrossRefGoogle Scholar
  10. 10.
    J.L. Friedman, J.R. Ipser, L. Parker, Astrophys. J. 304, 115 (1986).CrossRefGoogle Scholar
  11. 11.
    W. Chen, B.Q. Ai, L.G. Liu, Commun. Theor. Phys. 36, 183 (2001) .Google Scholar
  12. 12.
    K. Oyamatsu, K. Iida, Prog. Theor. Phys. 109, 631 (2003).Google Scholar
  13. 13.
    P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002).CrossRefGoogle Scholar
  14. 14.
    S.E. Thorsett, D. Chakrabarty, Astrophys. J. 512, 288 (1999).CrossRefGoogle Scholar
  15. 15.
    O. Barziv et al. , http:/ /xxx.lanl.gov/abs/astrop-ph/ 0108237.Google Scholar
  16. 16.
    J.A. Orosz, E. Kuulkers, Mon. Not. R. Astron. Soc. 305, 1320 (1999).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • De-hua Wen
    • 1
    • 2
  • Wei Chen
    • 3
  • Xian-ju Wang
    • 1
  • Bao-quan Ai
    • 1
  • Guo-tao Liu
    • 1
  • Dong-qiao Dong
    • 1
  • Liang-gang Liu
    • 1
    Email author
  1. 1.Department of PhysicsZhongshan UniversityGuangzhouPRC
  2. 2.Department of PhysicsSouth China University of TechnologyGuangzhouPRC
  3. 3.Department of PhysicsJinan UniversityGuangzhouPRC

Personalised recommendations