Advertisement

Monte Carlo methods for yrast spectroscopy

  • G. PudduEmail author
Article

Abstract.

We discuss the details of the recently proposed Monte Carlo method to evaluate the exact energies of yrast levels. Energy levels are evaluated up to J = 18 with small statistical errors using the Metropolis method for the case of 166Er using the pairing plus quadrupole model within one major shell. We also discuss the evaluation of the probabilities of the Hartree-Fock-Bogoliubov wave functions in the corresponding yrast eigenstates and they are found to be large. The model displays a too strong backbending behaviour not seen experimentally.

Keywords

Spectroscopy Wave Function Energy Level Monte Carlo Method Statistical Error 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Hubbard, Phys. Rev. Lett. 3, 77 (1959); R.D. Stratonovich, Dokl. Akad. Nauk SSSR 115, 1907 (1957).CrossRefzbMATHGoogle Scholar
  2. 2.
    J.W. Negele, H. Orland, Quantum Many-Particle Systems (Addison-Wesley Publishing Company, Reading, 1988) Chapts. 7 and 8.Google Scholar
  3. 3.
    G. Puddu, Phys. Rev. C 67, 051304 (2003).CrossRefGoogle Scholar
  4. 4.
    N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953).Google Scholar
  5. 5.
    M. Honma, T. Mizusaki, T. Otsuka, Phys. Rev. Lett. 77, 3315 (1996); T. Otsuka, M. Honma, T. Mizusaki, Phys. Rev. Lett. 81, 1588 (1998); N. Shimizu, T. Otsuka, T. Mizusaki, M. Honma, Phys. Rev. Lett. 86, 1171 (2001).CrossRefGoogle Scholar
  6. 6.
    S.E. Koonin, D.J. Dean, K. Langanke, Phys. Rep. 278, 1 (1977); J.A. White, S.E. Koonin, D.J. Dean, Phys. Rev. C 61, 034303 (2000).CrossRefGoogle Scholar
  7. 7.
    G. Puddu, Phys. Rev. C 59, 2500 (1999); Eur. Phys. J. A 9, 171 (2000); Phys. Rev. C 64, 034318 (2001).CrossRefGoogle Scholar
  8. 8.
    K. Kumar, M. Baranger, Nucl. Phys. A 110, 529 (1968).CrossRefGoogle Scholar
  9. 9.
    G. Puddu, J. Phys. G 29, 2179 (2003).CrossRefGoogle Scholar
  10. 10.
    M. Sakai, At. Data Nucl. Data Tables 31, 399 (1984).Google Scholar
  11. 11.
    R. Balian, E. Brezin, Nuovo Cimento B 64, 37 (1969).Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Dipartimento di Fisica dell’Universitá di MilanoMilanoItaly
  2. 2.INFN sezione di MilanoMilanoItaly

Personalised recommendations