Advertisement

The beta decay of neutron-deficient rhodium and ruthenium isotopes

  • S. DeanEmail author
  • M. Górska
  • F. Aksouh
  • H. de Witte
  • M. Facina
  • M. Huyse
  • O. Ivanov
  • K. Krouglov
  • Yu. Kudryavtsev
  • I. Mukha
  • D. Smirnov
  • J.-C. Thomas
  • K. Van de Vel
  • J. Van de Walle
  • P. Van Duppen
  • J. Van Roosbroeck
Article

Abstract.

The very neutron-deficient 91,92,93Rh and 90,91Ru nuclei were produced in 58Ni(36,40Ar, xn yp) fusion-evaporation reactions. Reaction products leaving the target were stopped in a gas cell and selectively laser ionised before mass separation using the LISOL setup. Data were collected in singles and coincidence formats to investigate \(\beta\)-delayed and isomeric \(\gamma\) decays. Ground-state decays of 91,93 Rh to excited states in the daughter nucleus were identified for the first time and the decay schemes of 90,91 Ru were expanded. The low-spin isomeric decay of 92Rh was identified for the first time and detail added to the decay scheme of the known high-spin state. Results are discussed in terms of comparison with shell model calculations. \(\beta\)-delayed proton activity in the lighter 90Rh and 89Ru isotopes was also investigated and upper limits for this decay mode in these two nuclei have been included.

Keywords

Excited State Ruthenium Rhodium Shell Model Decay Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Herndl, B.A. Brown, Nucl. Phys. A 627, 35 (1997).CrossRefGoogle Scholar
  2. 2.
    P. Van den Bergh et al. , Nucl. Instrum. Methods B 126, 194 (1997).Google Scholar
  3. 3.
    W. Reisdorf, Z. Phys. A 300, 227 (1981).Google Scholar
  4. 4.
    Y. Kudryavtsev et al. , Nucl. Instrum. Methods B 114, 350 (1996).Google Scholar
  5. 5.
    Y. Kudryavtsev et al. , Nucl. Instrum. Methods B 179, 412 (2001).Google Scholar
  6. 6.
    P. Van Duppen et al. , Hyperfine Interact. 127, 401 (2000).CrossRefGoogle Scholar
  7. 7.
    L. Weissman et al. , Nucl. Instrum. Methods A 423, 328 (1999).Google Scholar
  8. 8.
    http://wwwinfo.cern.ch/asd/geant/Google Scholar
  9. 9.
    http://www.srim.org/Google Scholar
  10. 10.
    http://groups.nscl.msu.edu/lise/lise.htmlGoogle Scholar
  11. 11.
    M. Facina et al. , to be published in Nucl. Instrum. Methods B.Google Scholar
  12. 12.
    http://wwwinfo.cern.ch/asdoc/minuit/minmain.html.Google Scholar
  13. 13.
    G. Audi, A.H. Wapstra, Phys. A 595, 409 (1995).CrossRefGoogle Scholar
  14. 14.
    A. Nilsson, M. Grecescu, Nucl. Phys. A 212, 448 (1973).CrossRefGoogle Scholar
  15. 15.
    S.E. Arnell et al. , Phys. Rev. C 49, 51 (1994).CrossRefGoogle Scholar
  16. 16.
    J.C. de Lange et al. , Z. Phys. A 279, 79 (1976).Google Scholar
  17. 17.
    E. Nolte et al. , Z. Phys. A 298, 191 (1980).Google Scholar
  18. 18.
    S.E. Arnell et al. , Z. Phys. A 346, 111 (1993).Google Scholar
  19. 19.
    M. Górska et al. , Acta Phys. Pol. B 27, 165 (1996).Google Scholar
  20. 20.
    C. Lingk et al. , Phys. Rev. C 56, R2349 (1997).Google Scholar
  21. 21.
    S-H. Zhou et al. , Chin. Phys. Lett. 16, 18 (1999).Google Scholar
  22. 22.
    P. Kienle et al. , Prog. Part. Nucl. Phys. 46, 73 (2001).CrossRefGoogle Scholar
  23. 23.
    P. Komninos et al. , Z. Phys. A 314, 135 (1983).Google Scholar
  24. 24.
    S.E. Arnell et al. , Phys. Scr. 47, 355 (1993).Google Scholar
  25. 25.
    J. Heese et al. , Phys. Rev. C 49, 1896 (1994).CrossRefGoogle Scholar
  26. 26.
    C. Rusu et al. , in preparation.Google Scholar
  27. 27.
    E. Hagberg et al. , Nucl. Phys. A 395, 152 (1983).CrossRefGoogle Scholar
  28. 28.
    D. Rudolph et al. , Phys. Rev. C 49, 66 (1994).CrossRefGoogle Scholar
  29. 29.
    Zhou Shuhua et al. , Z. Phys. A 350, 7 (1994).Google Scholar
  30. 30.
    Li Zhankui et al. , Eur. Phys. J. A 5, 351 (1999).Google Scholar
  31. 31.
    E. Caurier, F. Nowacki, Acta Phys. Pol. B 30, 705 (1999).Google Scholar
  32. 32.
    R. Gross, A. Frenkel, Nucl. Phys. A 267, 85 (1976).CrossRefGoogle Scholar
  33. 33.
    J. Sinatkas et al. , J. Phys. G 18, 1377 (1992).Google Scholar
  34. 34.
    J. Sinatkas et al. , J. Phys. G 18, 1401 (1992).Google Scholar
  35. 35.
    F.J.D. Serduke et al. , Nucl. Phys. A 256, 45 (1976).CrossRefGoogle Scholar
  36. 36.
    D. Kast et al. , Z. Phys. A 356, 363 (1997).CrossRefGoogle Scholar
  37. 37.
    G. Audi et al. , Nucl. Phys. A 624, 1 (1997).CrossRefGoogle Scholar
  38. 38.
    E. Galindo et al. , Eur. Phys. J. A 9, 439 (2000).CrossRefGoogle Scholar
  39. 39.
    N. Marginean et al. , private communication.Google Scholar
  40. 40.
    D. Rudolph et al. , Phys. Rev. C 47, 2574 (1993).CrossRefGoogle Scholar
  41. 41.
    K. Oxorn, S.K. Mark, Z. Phys. A 303, 63 (1981).Google Scholar
  42. 42.
    D. Habs et al. , Prog. Part. Nucl. Phys. 38, 111 (1997).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • S. Dean
    • 1
    Email author
  • M. Górska
    • 1
  • F. Aksouh
    • 1
  • H. de Witte
    • 1
  • M. Facina
    • 1
  • M. Huyse
    • 1
  • O. Ivanov
    • 1
  • K. Krouglov
    • 1
  • Yu. Kudryavtsev
    • 1
  • I. Mukha
    • 1
  • D. Smirnov
    • 1
  • J.-C. Thomas
    • 1
  • K. Van de Vel
    • 1
  • J. Van de Walle
    • 1
  • P. Van Duppen
    • 1
  • J. Van Roosbroeck
    • 1
  1. 1.Instituut voor Kern- en StralingsfysicaUniversity of LeuvenLeuvenBelgium

Personalised recommendations