Advertisement

Analysis of the \(\Lambda p\) final-state interaction in the reaction \(p + p\to K^ + (\Lambda p)\)

  • F. HinterbergerEmail author
  • A. Sibirtsev
Article

Abstract.

The missing-mass spectrum measured in high-resolution studies of the reaction \(pp\to K^ + X\) is analyzed with respect to the strong final-state interaction near the \(\Lambda{p}\) production threshold. The observed spectrum can be described by factorizing the reaction amplitude in terms of a production amplitude and a final-state scattering amplitude. Parametrizing the \(\Lambda{p}\) final-state interaction in terms of the inverse Jost function allows a direct extraction of the low-energy phase-equivalent potential parameters. Constraints on the singlet and triplet scattering lengths and effective ranges are deduced in a simultaneous fit of the \(\Lambda{p}\) invariant-mass spectrum and the total-cross-section data of the free \(\Lambda{p}\) scattering using the effective-range approximation.

Keywords

Potential Parameter Scattering Amplitude Direct Extraction Effective Range Production Threshold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R.H. Dalitz, Nuclear Interactions of the Hyperons (Oxford University Press, Oxford, 1965).Google Scholar
  2. 2.
    R.H. Dalitz, Nucl. Phys. A 354, 101c (1981).CrossRefGoogle Scholar
  3. 3.
    C.B. Dover, A. Gal, Prog. Part. Nucl. Phys. 12, 171 (1984).CrossRefGoogle Scholar
  4. 4.
    G. Alexander et al. , Phys. Rev. 173, 1452 (1968).CrossRefGoogle Scholar
  5. 5.
    B. Sechi-Zorn et al. , Phys. Rev. 175, 1735 (1968).CrossRefGoogle Scholar
  6. 6.
    G. Alexander, Proceedings of the International Conference on Hypernuclei (Argonne National Laboratory, 1969).Google Scholar
  7. 7.
    Tai Ho Tan, Phys. Rev. Lett. 23, 395 (1969).CrossRefGoogle Scholar
  8. 8.
    C. Pigot et al. , Nucl. Phys. B 249, 172 (1985).CrossRefGoogle Scholar
  9. 9.
    H. Piekarz, Nucl. Phys. A 479, 263c (1988).CrossRefGoogle Scholar
  10. 10.
    A.C. Melissinos et al. , Phys. Rev. Lett. 14, 604 (1965).CrossRefGoogle Scholar
  11. 11.
    J.T. Reed et al. , Phys. Rev. 168, 1495 (1968).CrossRefGoogle Scholar
  12. 12.
    W.J. Hogan, P.A. Piroue, A.J.S. Smith, Phys. Rev. 166, 1472 (1968).CrossRefGoogle Scholar
  13. 13.
    R. Siebert et al. , Nucl. Phys. A 567, 819 (1994).CrossRefGoogle Scholar
  14. 14.
    J.T. Balewski et al. , Eur. Phys. J. A 2, 99 (1998).CrossRefGoogle Scholar
  15. 15.
    B. Bilger et al. , Phys. Lett. B 420, 217 (1998).CrossRefGoogle Scholar
  16. 16.
    M. Maggiora et al. , Nucl. Phys. A 691, 329c (2001).CrossRefGoogle Scholar
  17. 17.
    M.M. Nagels, T.A. Rijken, J.J. de Swart, Phys. Rev. D 15, 2547 (1977).CrossRefGoogle Scholar
  18. 18.
    M.M. Nagels, T.A. Rijken, J.J. de Swart, Phys. Rev. D 20, 1633 (1979).CrossRefGoogle Scholar
  19. 19.
    P.M.M. Maessen, T.A. Rijken, J.J. de Swart, Phys. Rev. C 40, 226 (1989).CrossRefGoogle Scholar
  20. 20.
    V.C.J. Stoks, Th.A. Riken, Phys. Rev. C 59, 3009 (1999).CrossRefGoogle Scholar
  21. 21.
    B. Holzenkamp, K. Holinde, J. Speth, Nucl. Phys. A 500, 485 (1989).CrossRefGoogle Scholar
  22. 22.
    A. Reuber, K. Holinde, J. Speth, Nucl. Phys. A 570, 543 (1994).CrossRefGoogle Scholar
  23. 23.
    J. Haidenbauer, W. Melnitchouk, J. Speth, AIP Conf. Proc. 603, 421 (2001), nucl-th/0108062.CrossRefGoogle Scholar
  24. 24.
    A. Deloff, Nucl. Phys. A 505, 583 (1989).CrossRefGoogle Scholar
  25. 25.
    J.M. Laget, Phys. Lett. B 259, 24 (1991).CrossRefGoogle Scholar
  26. 26.
    A. Sibirtsev, Phys. Lett. B 359, 29 (1995).CrossRefGoogle Scholar
  27. 27.
    G. Fäldt, C. Wilkin, Z. Phys. A 357, 241 (1997).CrossRefGoogle Scholar
  28. 28.
    A. Sibirtsev, W. Cassing, nucl-th/9802025 (1998).Google Scholar
  29. 29.
    A. Sibirtsev, K. Tsushima, A.W. Thomas, Phys. Lett. B 421, 59 (1998)CrossRefGoogle Scholar
  30. 30.
    K. Tsushima, A. Sibirtsev, A.W. Thomas, Phys. Rev. C 59, 369 (1999).CrossRefGoogle Scholar
  31. 31.
    A. Sibirtsev, K. Tsushima, W. Cassing, A.W. Thomas, Nucl. Phys. A 646, 427 (1999)CrossRefGoogle Scholar
  32. 32.
    R. Shyam, Phys. Rev. C 60, 055213 (1999).CrossRefGoogle Scholar
  33. 33.
    A. Gasparian, J. Haidenbauer, C. Hanhart, L. Kondratyuk, J. Speth, Phys. Lett. B 480, 273 (2000)CrossRefGoogle Scholar
  34. 34.
    N.G. Kelkar, B.K. Jain, Int J. Mod. Phys. E 9, 431 (2000).CrossRefGoogle Scholar
  35. 35.
    R. Shyam, G. Penner, U. Mosel, Phys. Rev. C 63, 022202 (2001).CrossRefGoogle Scholar
  36. 36.
    A. Gasparian, J. Haidenbauer, C. Hanhart, L. Kondratyuk, J. Speth, Nucl. Phys. A 684, 397 (2001).CrossRefGoogle Scholar
  37. 37.
    A. Gasparyan, J. Haidenbauer, C. Hanhart, J. Speth, Phys. Rev. C 69. 034006 (2004), hep-ph/0311116.Google Scholar
  38. 38.
    K.M. Watson, Phys. Rev. 88, 1163 (1952).CrossRefzbMATHGoogle Scholar
  39. 39.
    A.B. Migdal, Sov. Phys. JETP 1, 2 (1955).zbMATHGoogle Scholar
  40. 40.
    M.L. Goldberger, K.M. Watson, Collision Theory (J. Wiley, New York, 1964) p. 549.Google Scholar
  41. 41.
    J. Gillespie, Final-State Interactions, edited by K.M. Watson, Holden-Day Adv. Phys. Monographs (Holden-Day, San Francisco, London, Amsterdam, 1964).Google Scholar
  42. 42.
    R. Jost, Helv. Phys. Acta 20, 356 (1947).Google Scholar
  43. 43.
    R. Jost, W. Kohn, Phys. Rev. 87, 977 (1952).CrossRefMathSciNetzbMATHGoogle Scholar
  44. 44.
    V. Bargmann, Phys. Rev. 75, 301 (1949).CrossRefMathSciNetzbMATHGoogle Scholar
  45. 45.
    V. Bargmann, Rev. Mod. Phys. 21, 488 (1949).CrossRefzbMATHGoogle Scholar
  46. 46.
    J.S. Schwinger, Phys. Rev. 72, 742 (1947).Google Scholar
  47. 47.
    H.A. Bethe, Phys. Rev. 76, 38 (1949).CrossRefzbMATHGoogle Scholar
  48. 48.
    J.M. Blatt, V. Weisskopf, Theoretical Nuclear Physics (J. Wiley, New York, London, 1954).Google Scholar
  49. 49.
    E. Byckling, K. Kajantie, Particle Kinematics (J. Wiley, New York, London, 1973).Google Scholar
  50. 50.
    Particle Data Group, Eur. Phys. J. C 3, 1 (1998).Google Scholar
  51. 51.
    F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Helmholtz-Institut für Strahlen- und KernphysikUniversität BonnBonnGermany
  2. 2.Institut für KernphysikForschungszentrum JülichJülichGermany
  3. 3.Special Research Center for the Subatomic Structure of Matter (CSSM) and Department of Physics and Mathematical PhysicsUniversity of AdelaideAustralia

Personalised recommendations