Advertisement

Extended RPA with ground-state correlations

  • M. TohyamaEmail author
  • S. Takahara
  • P. Schuck
Article

Abstract.

We propose a time-independent method for finding a correlated ground state of an extended time-dependent Hartree-Fock theory, known as the time-dependent density matrix theory (TDDM). The correlated ground state is used to formulate the small amplitude limit of TDDM (STDDM) which is a version of extended RPA theories with ground-state correlations. To demonstrate the feasibility of the method, we calculate the ground state of 22 O and study the first 2 + state and its two-phonon states using STDDM.

Keywords

Density Matrix Small Amplitude Matrix Theory Amplitude Limit Correlate Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Khan, N. Van Giai, Phys. Lett. B 472, 253 (2000).CrossRefGoogle Scholar
  2. 2.
    E. Khan, N. Sandulescu, M. Grasso, N. Van Giai, Phys. Rev. C 66, 024309 (2002).CrossRefGoogle Scholar
  3. 3.
    M. Matsuo, Nucl. Phys. A 696, 371 (2001).CrossRefGoogle Scholar
  4. 4.
    M. Gong, M. Tohyama, Z. Phys. A 335, 153 (1990).Google Scholar
  5. 5.
    F. De Blasio et al. , Phys. Rev. Lett. 68, 1663 (1992).CrossRefGoogle Scholar
  6. 6.
    M. Tohyama, Nucl. Phys. A 657, 343 (1999).CrossRefGoogle Scholar
  7. 7.
    M. Tohyama, A.S. Umar, Phys. Lett. B 516, 415 (2001).CrossRefGoogle Scholar
  8. 8.
    M. Tohyama, A.S. Umar, Phys. Lett. B 549, 72 (2002).CrossRefGoogle Scholar
  9. 9.
    M. Tohyama, M. Gong, Z. Phys. A 332, 269 (1989).Google Scholar
  10. 10.
    M. Tohyama, P. Schuck, Eur. Phys. J. A 19, 215 (2004).Google Scholar
  11. 11.
    M. Tohyama, Prog. Theor. Phys. 92, 905 (1994).Google Scholar
  12. 12.
    M. Tohyama, Prog. Theor. Phys. 94, 147 (1995).Google Scholar
  13. 13.
    M. Tohyama, P. Schuck, S.J. Wang, Z. Phys. A 339, 341 (1991).Google Scholar
  14. 14.
    H.J. Lipkin, N. Meshkov, A.J. Glick, Nucl. Phys. 62, 188 (1965).CrossRefGoogle Scholar
  15. 15.
    S.J. Wang, W. Cassing, Ann. Phys. (N.Y.) 159, 328 (1985); W. Cassing, S.J. Wang, Z. Phys. 328, 423 (1987).Google Scholar
  16. 16.
    J. Sawicki, Phys. Rev. 126, 2231 (1962); J. Da Providencia, Nucl. Phys. 61, 87 (1965).CrossRefzbMATHGoogle Scholar
  17. 17.
    C. Yannouleas, Phys. Rev. C 35, 1159 (1987).CrossRefGoogle Scholar
  18. 18.
    S. Drożdż, S. Nishizaki, J. Speth, J. Wambach, Phys. Rep. 197, 1 (1990).CrossRefGoogle Scholar
  19. 19.
    M. Tohyama, P. Schuck, Eur. Phys. J. A 19, 203 (2004).CrossRefGoogle Scholar
  20. 20.
    T. Otsuka, N. Fukunishi, H. Sagawa, Phys. Rev. Lett. 70, 1385 (1993).CrossRefGoogle Scholar
  21. 21.
    M. Tohyama, Phys. Rev. C 58, 2603 (1998).CrossRefGoogle Scholar
  22. 22.
    R.R. Chasman, Phys. Rev. C 14, 1935 (1976).CrossRefGoogle Scholar
  23. 23.
    J. Terasaki, H. Flocard, P.-H. Heenen, P. Bonche, Nucl. Phys. A 621, 706 (1997).CrossRefGoogle Scholar
  24. 24.
    T. Duguet, P. Bonche, P.-H. Heenen, Nucl. Phys. A 679, 427 (2001).CrossRefGoogle Scholar
  25. 25.
    M. Yamagami, K. Matsuyanagi, M. Matsuo, Nucl. Phys. A 693, 579 (2001).CrossRefGoogle Scholar
  26. 26.
    P.G. Thirof et al. , Phys. Lett. B 485, 16 (2000).CrossRefGoogle Scholar
  27. 27.
    B.A. Brown, Prog. Part. Nucl. Phys. 47, 517 (2001); http://www.nscl.msu.edu/~brown/database.htm.CrossRefGoogle Scholar
  28. 28.
    N. Kanesaki, T. Marumori, F. Sakata, K. Takada, Prog. Theor. Phys. 50, 867 (1973).Google Scholar
  29. 29.
    M. Tohyama, Phys. Rev. C 64, 067304 (2001).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Kyorin University School of MedicineMitaka, TokyoJapan
  2. 2.Institut de Physique NucléaireIN2P3-CNRS, Université Paris-SudOrsay CedexFrance

Personalised recommendations