Advertisement

\(\sigma(600)\) and background in \(\pi\pi\) scattering

  • A. E. KaloshinEmail author
  • V. M. Persikov
  • A. N. Vall
Article

Abstract.

We suggest a simple analytical description of the S-wave isoscalar \(\pi\pi\) amplitude, which corresponds to a joint dressing of the bare resonance and background contributions. The amplitude describes well the experimental data on the \(\delta^0_0\) phase shift in the energy region below 900 MeV and has two poles in the \({\rm Re}\ s > \ 0\) half-plane. Besides the well-known pole of the \(\sigma(600)\)-meson with \({\rm Re}\ s \sim m_{\pi}^2\), there exists a more distant pole with \(\mathrm{Re} s \tilde 0.6 \mathrm{GeV}^{2}\). Our analysis is interpreted as an indication for the dynamical origin of the \(\sigma(600)\) pole, while the second pole should be associated with lowest \(q\bar{q}\) state.

Keywords

Experimental Data Phase Shift Analytical Description Energy Region Lower State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Minkowski, W. Ochs, Eur. Phys. J. C 9, 283 (1999).CrossRefGoogle Scholar
  2. 2.
    V.V. Anisovich, V.A. Nikonov, Eur. Phys. J. A 8, 401 (2000).CrossRefGoogle Scholar
  3. 3.
    E. Klempt, in Proceedings of Zuoz 2000, Phenomenology of Gauge Interactions, edited by D. Graudenz, V. Markushin (PSI, Villigen, 2000) pp. 61-126.Google Scholar
  4. 4.
    N.A. Törnqvist, A.D. Polosa, Nucl. Phys. A 692, 259 (2001).CrossRefGoogle Scholar
  5. 5.
    E. van Beveren, F. Kleefeld, G. Rupp, M.D. Scadron, Mod. Phys. Lett. A 17, 1673 (2002).CrossRefGoogle Scholar
  6. 6.
    N.N. Achasov, G.N. Shestakov, Phys. Rev. D 49, 5779 (1994).CrossRefGoogle Scholar
  7. 7.
    S. Ishida et al. , Prog. Theor. Phys. 95, 745 (1996); 98, 1005 (1997).Google Scholar
  8. 8.
    K. Takamatsu, Prog. Theor. Phys. 102, E52 (2001).Google Scholar
  9. 9.
    A.N. Vall, V.S. Dedushev, V.V. Serebryakov, Yad. Fiz. 17, 126 (1973).Google Scholar
  10. 10.
    S. Pislak et al. , Phys. Rev. Lett. 87, 221801 (2001).CrossRefGoogle Scholar
  11. 11.
    L. Rosselet et al. , Phys. Rev. D 15, 574 (1977).CrossRefGoogle Scholar
  12. 12.
    G. Colangelo, J. Gasser, H. Leutwyler, Nucl. Phys. B 603, 125 (2001).CrossRefGoogle Scholar
  13. 13.
    V.V. Vereshagin, K.N. Mukhin, O.O. Patarakin, Usp. Fiz. Nauk 170, 353 (2000).Google Scholar
  14. 14.
    F.J. Yndurain, Low-energy pion physics, arXiv: hep-ph/0212282, unpublished.Google Scholar
  15. 15.
    S.D. Protopopescu et al. , Phys. Rev. D 7, 1279 (1973).CrossRefGoogle Scholar
  16. 16.
    P. Estabrooks, A.D. Martin, Nucl. Phys. B 79, 301 (1974).CrossRefGoogle Scholar
  17. 17.
    B. Ananthanarayan, G. Colangelo, J. Gasser, H. Leutwyler, Phys. Rep. 353, 207 (2001).CrossRefzbMATHGoogle Scholar
  18. 18.
    N.A. Törnqvist, M. Roos, Phys. Rev. Lett. 76, 1575 (1996); 77, 2333 (1996).CrossRefGoogle Scholar
  19. 19.
    N. Izgur, J. Speth, Phys. Rev. Lett. 77, 2332 (1996).CrossRefGoogle Scholar
  20. 20.
    C.M. Shakin, Huangsheng Wang, Phys. Rev. D 63, 014019 (2001).CrossRefGoogle Scholar
  21. 21.
    M. Boglione, M.R. Pennington, Phys. Rev. D 65, 114010 (2002).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Irkutsk State UniversityIrkutskRussia

Personalised recommendations