\(\delta\)-pairing forces and collective pairing vibrations

  • K. SiejaEmail author
  • A. Baran
  • K. Pomorski


The collective pairing Hamiltonian is obtained in the framework of the generator coordinate method in the Gaussian overlap approximation with a slightly modified BCS function used as a generator function. The collective variable \(\alpha\), measuring the monopole moment of the pairing field, and the gauge transformation angle \(\phi\) are chosen as generator coordinates. The vibrational ground states are calculated by diagonalisation of the collective pairing Hamiltonian in the harmonic-oscillator basis.


Generator Function Gauge Transformation Generator Coordinate Coordinate Method Vibrational Ground State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.R. Bés, R.A. Broglia, R.P.J. Perazzo, K. Kumar, Nucl. Phys. A 143, 1 (1970).CrossRefGoogle Scholar
  2. 2.
    A. Góźdź, K. Pomorski, M. Brack, E. Werner, Nucl. Phys. A 442, 50 (1985).CrossRefGoogle Scholar
  3. 3.
    A. Góźdź, K. Pomorski, M. Brack, E. Werner. Nucl. Phys. A 442, 26 (1985).CrossRefGoogle Scholar
  4. 4.
    A. Góźdź, K. Pomorski, Nucl. Phys. A 451, 1 (1986).CrossRefGoogle Scholar
  5. 5.
    S.G. Nilsson, Mat. Fys. Medd. Dan. Vid. Selsk. 29, No. 16, 1 (1955).zbMATHGoogle Scholar
  6. 6.
    S.J. Krieger, P. Bonche, H. Flocard, P. Quentin, M. Weiss, Nucl. Phys. A 517, 275 (1990).CrossRefGoogle Scholar
  7. 7.
    A. Baran, W. Höhenberger, Phys. Rev. C 52, 2242 (1995).CrossRefGoogle Scholar
  8. 8.
    J. Meng, Nucl. Phys. A 635, 3 (1998).CrossRefGoogle Scholar
  9. 9.
    J. Meyer, P. Bonche, J. Dobaczewski, H. Flocard, P.H. Heneen. Nucl. Phys. A 533, 207 (1991).Google Scholar
  10. 10.
    K. Sieja, A. Baran, Phys. Rev. C 68, 044308 (2003).CrossRefGoogle Scholar
  11. 11.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. 2 (Benjamin, 1984).Google Scholar
  12. 12.
    S.T. Belyaev, Mat. Fys. Medd. Dan. Vid. Selsk. 31, No. 11, 1 (1959).Google Scholar
  13. 13.
    L. Wilets, Theories of Fission (Clarendon Press, Oxford, 1964).Google Scholar
  14. 14.
    S.G. Nilsson, C.F. Tsang, A. Sobiczewski, Z. Szymański, C. Wycech, C. Gustafson, I.-L. Lamm, P. Möller, B. Nilsson, Nucl. Phys. A 131, 1 (1969).zbMATHGoogle Scholar
  15. 15.
    A.Staszczak, S. Piłat, K. Pomorski, Nucl. Phys. A 504, 589 (1989).CrossRefGoogle Scholar
  16. 16.
    L. Próchniak, K. Zaj ac, K. Pomorski, S.G. Rohoziński, J. Srebrny, Nucl. Phys. A 648, 181 (1999).CrossRefGoogle Scholar
  17. 17.
    K. Zajac, L. Próchniak, K. Pomorski, S.G. Rohoziński, J. Srebrny, Nucl. Phys. A 653, 71 (1999).CrossRefGoogle Scholar
  18. 18.
    I. Talmi, Simple Models of Complex Nuclei, Vol. 7 (Harwood Academic Publishers, 1993).Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Institute of PhysicsMaria Curie-Skłodowska UniversityLublinPoland

Personalised recommendations