Advertisement

The Gamow-Teller resonance in finite nuclei in the relativistic random phase approximation

  • Z.-Y. MaEmail author
  • B.-Q. Chen
  • N. Van Giai
  • T. Suzuki
Article

Abstract.

Gamow-Teller (GT) resonances in finite nuclei are studied in a fully consistent relativistic random phase approximation (RPA) framework. A relativistic form of the Landau-Migdal contact interaction in the spin-isospin channel is adopted, which has a vector part as well as a time-like component. This choice ensures that the GT excitation energy in nuclear matter is correctly reproduced in the non-relativistic limit. The GT response functions of doubly magic nuclei 48Ca, 90Zr and 208Pb are calculated using the parameter set NL3 and g’ = 0.6. It is found that the effects related to Dirac sea states account for a reduction of 6-7% in the GT sum rule. The quenching of the GT strength in finite nuclei implies that the value of g’ in the relativistic model might be enlarged about 7%. The time component in the relativistic form of the Landau-Migdal force plays a little role in GT resonance energies.

Keywords

208Pb Nuclear Matter Contact Interaction Relativistic Form Random Phase Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Ring, Prog. Part. Nucl. Phys. 37, 197 (1996).CrossRefGoogle Scholar
  2. 2.
    J.F. Dawson, R.J. Furnstahl, Phys. Rev. C 42, 2009 (1990).CrossRefGoogle Scholar
  3. 3.
    C.J. Horowitz, J. Piekarewicz, Nucl. Phys. A 511, 461 (1990).CrossRefGoogle Scholar
  4. 4.
    Z.Y. Ma Commun. Theor. Phys. 32, 493 (1999).Google Scholar
  5. 5.
    Z.Y. Ma, N. Van Giai, A. Wandelt, D. Vretenar, P. Ring, Nucl. Phys. A 686, 173 (2001).CrossRefGoogle Scholar
  6. 6.
    D. Vretenar, Nucl. Phys. A 649, 29c (1999).CrossRefGoogle Scholar
  7. 7.
    G.A. Lalazissis et al. , Phys. Rev. C 55, 540 (1997).CrossRefGoogle Scholar
  8. 8.
    P. Ring, Z.Y. Ma, N. Van Giai, D. Vretenar, A. Wandelt, L.G. Cao, Nucl. Phys. A 694, 249 (2001).CrossRefzbMATHGoogle Scholar
  9. 9.
    Z.Y. Ma, A. Wandelt, N. Van Giai, D. Vretenar, P. Ring, L.G. Cao, Nucl. Phys. A 703, 222 (2002).CrossRefGoogle Scholar
  10. 10.
    T. Wakasa et al. , Phys. Rev. C 55, 2909 (1997).CrossRefGoogle Scholar
  11. 11.
    T. Wakasa, H. Sakai, S. Fujita, T. Noanaka et al. , Nucl. Phys. A 687, 26c (2001); H. Sakai, K. Yako, Nucl. Phys. A 722, 294 (2003).CrossRefGoogle Scholar
  12. 12.
    K. Ikeda , S. Fujii, J.I. Fujita, Phys. Lett. 3, 271 (1963).CrossRefzbMATHGoogle Scholar
  13. 13.
    G.F. Bertsch, I. Hamamoto, Phys. Rev. C 26, 1323 (1982).CrossRefGoogle Scholar
  14. 14.
    E. Oset, M Rho, Phys. Rev. Lett. 42, 47 (1979).CrossRefGoogle Scholar
  15. 15.
    C. De Conti, A.P. Galeão, E. Krmpotié, Phys. Lett. B 444, 14 (1998).CrossRefGoogle Scholar
  16. 16.
    C. De Conti, A.P. Galeão, E. Krmpotié, Phys. Lett. B 494, 46 (2000).CrossRefGoogle Scholar
  17. 17.
    H. Kurasawa, T. Suzuki, N. Van. Giai, Phys. Rev. Lett. 91, 062501 (2003); Phys. Rev. C 68, 064311 (2003).CrossRefGoogle Scholar
  18. 18.
    C.J. Horowitz, J. Piekarewicz, Phys. Rev. C 50, 2540 (1994).CrossRefGoogle Scholar
  19. 19.
    Z.Y. Ma, N. Van Giai, H. Toki, M. L’Huillier, Phys. Rev. C 55, 2385 (1997).CrossRefGoogle Scholar
  20. 20.
    D.M. Brink, G.R. Satchler, Angular Momentum (Oxford University Press, London, 1962).Google Scholar
  21. 21.
    B.D. Anderson et al. , Phys. Rev. C 31, 1161 (1985).CrossRefGoogle Scholar
  22. 22.
    H. Akimune et al. , Phys. Rev. C 52, 604 (1995).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  • Z.-Y. Ma
    • 1
    • 2
    Email author
  • B.-Q. Chen
    • 1
    • 2
  • N. Van Giai
    • 3
  • T. Suzuki
    • 4
    • 5
  1. 1.China Institute of Atomic EnergyBeijingPRC
  2. 2.Center of Theoretical Nuclear PhysicsNational Laboratory of Heavy Ion Accelerator of LanzhouLanzhouPRC
  3. 3.Institut de Physique NucléaireIN2P3-CNRSOrsay CedexFrance
  4. 4.Department of Applied PhysicsFukui UniversityFukuiJapan
  5. 5.RIKENWako-shi, SaitamaJapan

Personalised recommendations