Advertisement

Eigenstates of the time-dependent density-matrix theory

  • M. TohyamaEmail author
  • P. Schuck
Article

Abstract.

An extended time-dependent Hartree-Fock theory, known as the time-dependent density-matrix theory (TDDM), is solved as a time-independent eigenvalue problem for low-lying 2 + states in 24O to understand the foundation of the rather successful time-dependent approach. It is found that the calculated strength distribution of the 2 + states has physically reasonable behavior and that the strength function is practically positive definite though the non-Hermitian Hamiltonian matrix obtained from TDDM does not guarantee it. A relation to an Extended RPA theory with hermiticity is also investigated. It is found that the density-matrix formalism is a good approximation to the Hermitian Extended RPA theory.

Keywords

Eigenvalue Problem Strength Distribution Strength Function Hamiltonian Matrix Reasonable Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Gong, M. Tohyama, Z. Phys. A 335, 153 (1990).Google Scholar
  2. 2.
    M. Gong, M. Tohyama, J. Randrup, Z. Phys. A 335, 331 (1990).Google Scholar
  3. 3.
    M. Tohyama, A.S. Umar, Phys. Rev. C 65, 037601 (2002).CrossRefGoogle Scholar
  4. 4.
    F. De Blasio, Phys. Rev. Lett. 68, 1663 (1992).CrossRefGoogle Scholar
  5. 5.
    M. Tohyama, Nucl. Phys. A 657, 343 (1999).CrossRefGoogle Scholar
  6. 6.
    M. Tohyama, A.S. Umar, Phys. Lett. B 516, 415 (2001).CrossRefGoogle Scholar
  7. 7.
    M. Tohyama, A.S. Umar, Phys. Lett. B 549, 72 (2002).CrossRefGoogle Scholar
  8. 8.
    M. Tohyama, P. Schuck, this issue, p. 203, nucl-th/0305087.Google Scholar
  9. 9.
    S.J. Wang, W. Cassing, Ann. Phys. (N.Y.) 159, 328 (1985)Google Scholar
  10. 10.
    M. Tohyama, M. Gong, Z. Phys. A 332, 269 (1989).Google Scholar
  11. 11.
    J. Sawicki, Phys. Rev. 126, 2231 (1962)CrossRefzbMATHGoogle Scholar
  12. 12.
    C. Yannouleas, Phys. Rev. C 35, 1159 (1987)CrossRefGoogle Scholar
  13. 13.
    T. Otsuka, N. Fukunishi, H. Sagawa, Phys. Rev. Lett. 70, 1385 (1993).CrossRefGoogle Scholar
  14. 14.
    E. Khan, N. Van Giai, Phys. Lett. B 472, 253 (2000).CrossRefGoogle Scholar
  15. 15.
    M. Tohyama, Prog. Theor. Phys. 94, 147 (1995).Google Scholar
  16. 16.
    R.R. Chasman, Phys. Rev. C 14, 1935 (1976).CrossRefGoogle Scholar
  17. 17.
    J. Terasaki, H. Flocard, P.-H. Heenen, P. Bonche, Nucl. Phys. A 621, 706 (1997).CrossRefGoogle Scholar
  18. 18.
    T. Duguet, P. Bonche, P.-H. Heenen, Nucl. Phys. A 679, 427 (2001).CrossRefGoogle Scholar
  19. 19.
    M. Yamagami, K. Matsuyanagi, M. Matsuo, Nucl. Phys. A 693, 579 (2001).CrossRefGoogle Scholar
  20. 20.
    M. Matsuo, Nucl. Phys. A 696, 371 (2001).CrossRefGoogle Scholar
  21. 21.
    E. Khan, N. Sandulescu, M. Grasso, N. Van Giai, Phys. Rev. C 66, 024309 (2002).CrossRefGoogle Scholar
  22. 22.
    M. Tohyama, P. Schuck, S.J. Wang, Z. Phys. A 339, 341 (1991).Google Scholar
  23. 23.
    M. Tohyama, Phys. Rev. C 58, 2603 (1998).CrossRefGoogle Scholar
  24. 24.
    D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968).Google Scholar
  25. 25.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer, Heidelberg, 1980).Google Scholar
  26. 26.
    K. Takayanagi, K. Shimizu, A. Arima, Nucl. Phys. A 477, 205 (1988).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Kyorin University School of MedicineMitaka, TokyoJapan
  2. 2.Institut de Physique Nucléaire, IN2P3-CNRSUniversité Paris-SudOrsay CedexFrance

Personalised recommendations