Advertisement

Why the high-lying glueball does not mix with the neighbouring f 0

  • L. Ya Glozman
Letter

Abstract.

Chiral symmetry restoration in high-lying hadron spectra implies that hadrons which belong to different irreducible representations of the parity-chiral group cannot mix. This explains why the \(f_0(2102 \pm 13)\), which was suggested to be a glueball, and hence must belong to the scalar (0,0) representation of the chiral group, cannot mix with the neighbouring \(f_0(2040 \pm 38)\), which was interpreted as a \( n\bar n\) state, and that belongs to the (1/2,1/2) representation of the chiral group. If confirmed, then we have an access to a “true” glueball of QCD.

Keywords

Irreducible Representation Chiral Symmetry Hadron Spectrum Chiral Symmetry Restoration Chiral Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Particle Data Group (D. Groom), Eur. Phys. J. C 15, 1 (2000).Google Scholar
  2. 2.
    V.V. Anisovich, Phys. Usp., 41, 419 (1998).Google Scholar
  3. 3.
    F.E. Close, N.A. Törnqvist, hep-ph/0204205.Google Scholar
  4. 4.
    C. Amsler, Phys. Lett. B 451, 22 (2002).CrossRefGoogle Scholar
  5. 5.
    N.A. Törnqvist, Z. Phys. C 68, 647 (1995)Google Scholar
  6. 6.
    A.V. Anisovich, Phys. Lett. B 449, 154 (1999)CrossRefGoogle Scholar
  7. 7.
    A.V. Anisovich, Phys. Lett. B 491, 47 (2000).CrossRefGoogle Scholar
  8. 8.
    A.V. Anisovich, Phys. Lett. B 517, 261 (2001).CrossRefGoogle Scholar
  9. 9.
    F. Wilczek, hep-lat/0212041.Google Scholar
  10. 10.
    L.Ya. Glozman, Phys. Lett. B 475, 329 (2000).CrossRefGoogle Scholar
  11. 11.
    T.D. Cohen, L.Ya. Glozman, Phys. Rev. D 65, 016006 (2002).CrossRefGoogle Scholar
  12. 12.
    T.D. Cohen, L.Ya. Glozman, Int. J. Mod. Phys. A 17, 1327 (2002).CrossRefGoogle Scholar
  13. 13.
    L.Ya. Glozman, Phys. Lett. B 539, 257 (2002).CrossRefGoogle Scholar
  14. 14.
    L.Ya. Glozman, Phys. Lett. B 541, 115 (2002).CrossRefGoogle Scholar
  15. 15.
    L.Ya. Glozman, hep-ph/0210216.Google Scholar
  16. 16.
    L.Ya. Glozman, hep-ph/0304087.Google Scholar
  17. 17.
    M.A. Shifman, A.I. Vainstein, V.I. Zakharov, Nucl. Phys. B 147, 385 (1979).CrossRefGoogle Scholar
  18. 18.
    ALEPH Collaboration (R. Barate), Eur. Phys. J. C 4, 409 (1998).CrossRefGoogle Scholar
  19. 19.
    OPAL Collaboration (K. Ackerstaff), Eur. Phys. J. C 7, 571 (1999).CrossRefGoogle Scholar
  20. 20.
    M. Davier, S. Eidelman, A. Höcker, Z. Zhang, hep-ph/0208177.Google Scholar
  21. 21.
    I. Niculesku, Phys. Rev. Lett. 85, 1186 (2000).CrossRefGoogle Scholar
  22. 22.
    T. Appelquist, H. Georgi, Phys. Rev. D 8, 4000 (1973).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of GrazGrazAustria

Personalised recommendations