Random-phase approximation and its extension for the O(2) anharmonic oscillator

  • Z. AouissatEmail author
  • C. Martin


We apply the random-phase approximation (RPA) and its extension called renormalized RPA to the quantum anharmonic oscillator with an O(2) symmetry. We first obtain the equation for the RPA frequencies in the standard and in the renormalized RPAs using the equation-of-motion method. In the case where the ground state has a broken symmetry, we check the existence of a zero frequency in the standard and in the renormalized RPAs. Then we use a time-dependent approach where the standard-RPA frequencies are obtained as small oscillations arround the static solution in the time-dependent Hartree-Bogoliubov equation. We draw the parallel between the two approaches.


Static Solution Break Symmetry Small Oscillation Anharmonic Oscillator Zero Frequency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Barnes, G.I. Ghandour, Phys. Rev. D 22, 924 (1980)CrossRefGoogle Scholar
  2. 2.
    A.K. Kerman, D. Vautherin, Ann. Phys. (N.Y.) 192, 408 (1989)zbMATHGoogle Scholar
  3. 3.
    P. Ring, P. Schuck, The Nuclear Many-Body Problem (Springer-Verlag, 1980).Google Scholar
  4. 4.
    J. Dukelsky, P. Schuck, Phys. Lett. B 387, 233 (1996).CrossRefGoogle Scholar
  5. 5.
    D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968)Google Scholar
  6. 6.
    H. Hansen, G. Chanfray, D. Davesne, P. Schuck Eur. Phys. J. A 14, 397 (2002).CrossRefGoogle Scholar
  7. 7.
    G. Chanfray, H. Hansen, in preparation.Google Scholar
  8. 8.
    Z. Aouissat, G. Chanfray, P. Schuck, J. Wambach, Nucl. Phys. A 603, 458 (1996)CrossRefGoogle Scholar
  9. 9.
    Z. Aouissat, M. Belkacem, Phys. Rev. C 60, 065211 (1999).CrossRefGoogle Scholar
  10. 10.
    K. Hagino, G.F. Bertsch, Phys. Rev. C 61, 024307 (2000).CrossRefGoogle Scholar
  11. 11.
    P.M. Stevenson, Phys. Rev D 30, 1712 (1984).CrossRefGoogle Scholar
  12. 12.
    F.T. Hioe, Don MacMillen, E.W. Montroll, Phys. Rep. C 43, 305 (1978).CrossRefGoogle Scholar
  13. 13.
    J. Dukelsky, P. Schuck, Nucl. Phys. A 512, 466 (1990).CrossRefGoogle Scholar
  14. 14.
    A.K. Kerman, S.E. Koonin, Ann. Phys. (N.Y.) 100, 332 (1976).zbMATHGoogle Scholar
  15. 15.
    A.K. Kerman, C.Y. Lin, Ann. Phys. (N.Y.) 241, 185 (1995)CrossRefGoogle Scholar
  16. 16.
    R. Balian, M. Veneroni, Phys. Rev. Lett. 47, 1353 (1981).CrossRefGoogle Scholar
  17. 17.
    C. Martin, Ann. Phys. (N.Y.) 271, 294 (1999).CrossRefzbMATHGoogle Scholar
  18. 18.
    K. Tanabe, K. Sugawara-Tanabe, Prog. Theor. Phys. 76, 356 (1986).Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Institut für KernphysikTechnische Hochschule DarmstadtDarmstadtGermany
  2. 2.Groupe de Physique ThéoriqueInstitut de Physique NucléaireOrsay CedexFrance

Personalised recommendations