Spurious modes in Extended RPA theories

  • M. TohyamaEmail author
  • P. Schuck


The necessary conditions that the spurious state associated with the translational motion and its double-phonon state have zero excitation energy in Extended RPA (ERPA) theories which include both one-body and two-body amplitudes are investigated using the small-amplitude limit of the time-dependent density-matrix theory (STDDM). STDDM provides us with a quite general form of ERPA, as compared with other similar theories, in the sense that all components of one-body and two-body amplitudes are taken into account. Two conditions are found necessary to guarantee the above property of the single and double spurious states: The first is that no truncation in the single-particle space should be made. This condition is necessary for the closure relation to be used and is common for the single and double spurious states. The second depends on the mode. For the single spurious state all components of the one-body amplitudes must be included, and for the double spurious state all components of one-body and two-body amplitudes have to be included. It is also shown that the Kohn theorem and the continuity equations for transition densities and currents hold under the same conditions as the spurious states. ERPA theories formulated using the Hartree-Fock ground state have a non-hermiticity problem. A method for formulating ERPA with hermiticity is also proposed using the time-dependent density-matrix formalism.


Excitation Energy Closure Relation Continuity Equation Translational Motion Similar Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Chomaz, N. Frascaria, Phys. Rep. 252, 275 (1995)CrossRefGoogle Scholar
  2. 2.
    C.A. Bertulani, V.Y. Ponomarev, Phys. Rep. 321, 139 (1999).CrossRefGoogle Scholar
  3. 3.
    G. Berstch, S. Tsai, Phys. Rep. C 18, 125 (1975).Google Scholar
  4. 4.
    D.J. Thouless, Nucl. Phys. 22, 78 (1961).CrossRefzbMATHGoogle Scholar
  5. 5.
    J. Sawicki, Phys. Rev. 126, 2231 (1962)CrossRefzbMATHGoogle Scholar
  6. 6.
    C. Yannouleas, Phys. Rev. C 35, 1159 (1987).CrossRefGoogle Scholar
  7. 7.
    S. Drożdż, Phys. Rep. 197, 1 (1990).CrossRefGoogle Scholar
  8. 8.
    M. Tohyama, M. Gong, Z. Phys. A 332, 269 (1989).Google Scholar
  9. 9.
    W. Kohn, Phys. Rev. 123, 1242 (1961).CrossRefzbMATHGoogle Scholar
  10. 10.
    L. Brey, N.F. Johnson, B.I. Halperin, Phys. Rev. B 40, 647 (1989).Google Scholar
  11. 11.
    J.F. Dobson, Phys. Rev. Lett. 73, 2244 (1994).CrossRefGoogle Scholar
  12. 12.
    S.J. Wang, W. Cassing, Ann. Phys. (N.Y.) 159, 328 (1985)Google Scholar
  13. 13.
    D. Vautherin, N. Vinh Mau, Nucl. Phys. A 422, 140 (1984).CrossRefGoogle Scholar
  14. 14.
    H.M. Sommermann, Ann. Phys. (N.Y.) 151, 163 (1983).Google Scholar
  15. 15.
    K. And\(\bar{\rm o}\), A. Ikeda, G. Holzwarth, Z. Phys. A 310, 223 (1983).Google Scholar
  16. 16.
    S. Adachi, P. Schuck, Nucl. Phys. A 496, 485 (1989).CrossRefGoogle Scholar
  17. 17.
    P. Danielewicz, P. Schuck, Nucl. Phys. A 567, 78 (1994).CrossRefGoogle Scholar
  18. 18.
    N. Kanesaki, T. Marumori, F. Sakata, K. Takada, Prog. Theor. Phys. 50, 867 (1973).Google Scholar
  19. 19.
    M. Tohyama, Phys. Rev. C 64, 067304 (2001).CrossRefGoogle Scholar
  20. 20.
    M. Tohyama, A.S. Umar, Phys. Lett. B 549, 72 (2002).CrossRefGoogle Scholar
  21. 21.
    B.K. Agrawal, S. Shlomo, A.I. Sanzhur, Phys. Rev. C 67, 034314 (2003).CrossRefGoogle Scholar
  22. 22.
    D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968).Google Scholar
  23. 23.
    M. Tohyama, Z. Phys. A 335, 413 (1990).Google Scholar
  24. 24.
    M. Tohyama, P. Schuck, S.J. Wang, Z. Phys. A 339, 341 (1991).Google Scholar
  25. 25.
    M. Tohyama, Prog. Theor. Phys. 94, 147 (1995).Google Scholar
  26. 26.
    M. Tohyama, Phys. Rev. C 58, 2603 (1998).CrossRefGoogle Scholar
  27. 27.
    M. Tohyama, A.S. Umar, Phys. Lett. B 516, 415 (2001).CrossRefGoogle Scholar
  28. 28.
    K. Takayanagi, K. Shimizu, A. Arima, Nucl. Phys. A 477, 205 (1988).CrossRefGoogle Scholar
  29. 29.
    K. Hara, Prog. Theor. Phys. 32, 88 (1964).Google Scholar
  30. 30.
    D.J. Rowe, Phys. Rev. 175, 1283 (1968).CrossRefGoogle Scholar
  31. 31.
    J.G. Hirsch, A. Mariano, J. Dukelsky, P. Schuck, Ann. Phys. (N.Y.) 296, 187 (2002) and references therein.CrossRefGoogle Scholar
  32. 32.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).CrossRefGoogle Scholar
  33. 33.
    M. Gell-Mann, R.J. Oakes, B. Renner Phys. Rev. 175, 2195 (1968).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.Kyorin University School of MedicineMitaka, TokyoJapan
  2. 2.Institut de Physique Nucléaire, IN2P3-CNRSUniversité Paris-SudOrsay CedexFrance

Personalised recommendations