Advertisement

Two-quasiparticle and collective excitations in transitional 108,110 Pd nuclei

  • S. LalkovskiEmail author
  • A. Minkova
  • M.-G. Porquet
  • A. Bauchet
  • I. Deloncle
  • A. Astier
  • N. Buforn
  • L. Donadille
  • O. Dorvaux
  • B. P. J. Gall
  • R. Lucas
  • M. Meyer
  • A. Prévost
  • N. Redon
  • N. Schulz
  • O. Stézowski
Article

Abstract.

High-spin states in 108,110Pd isotopes are studied by \(\gamma\)-ray spectroscopy of heavy-ion-induced fission. The Pd isotopes are produced in the fission channel of the 31P + 176Yb reaction at beam energy 152 MeV. The prompt \(\gamma\)-rays are detected with the EUROBALL4 multidetector array. The yrast states of 108,110Pd have been observed above the region of the first backbend. The level scheme of 108Pd was extended with a new negative-parity band. The yrast sequence in 110Pd is observed up to spin I = 14 + and negative-parity bands have also been identified. The backbending in these even-mass Pd isotopes is associated with the alignment of the neutron (h 11/2)2 pair. The negative-parity states arise from two neutron configurations \(\nu h_{11/2} \otimes \nu g_{7/2}\) and \(\nu h_{11/2} \otimes \nu d_{5/2}\) and they are interpreted in the frame of two-quasiparticle + rotor model as semidecoupled bands. The observed experimental staggering in the \(\gamma\)-bands of 108,110Pd supports the theoretical predictions for \(\gamma\)-instability of their shapes.

Keywords

Spectroscopy Theoretical Prediction Beam Energy Level Scheme Collective Excitation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Möller , At. Data Nucl. Data Tables 26, 165 (1981).Google Scholar
  2. 2.
    T. Venkova , Eur. Phys. J. A 6, 405 (1999).CrossRefGoogle Scholar
  3. 3.
    Ka-Hae Kim , Nucl. Phys. A 604, 163 (1996).CrossRefGoogle Scholar
  4. 4.
    C. Flaum, D. Cline, Phys. Rev. C 14, 1224 (1976).CrossRefGoogle Scholar
  5. 5.
    A. Hastings , Phys. Rev. C 14, 1946 (1976).CrossRefGoogle Scholar
  6. 6.
    K.R. Pohl , Phys. Rev. C 53, 2682 (1996).Google Scholar
  7. 7.
    P.H. Regan , Phys. Rev. C 55, 2305 (1997).CrossRefGoogle Scholar
  8. 8.
    Aryaeinejad , Phys. Rev. C 48, 566 (1993).CrossRefGoogle Scholar
  9. 9.
    M. Houry , Eur. Phys. J. A 6, 43 (1999).CrossRefGoogle Scholar
  10. 10.
    R. Krücken , Eur. Phys. J. A 10, 151 (2001).CrossRefGoogle Scholar
  11. 11.
    J. Äystö , Nucl. Phys. A 480, 104 (1988).CrossRefGoogle Scholar
  12. 12.
    J. Simpson, Z. Phys. A 358, 139 (1997).CrossRefGoogle Scholar
  13. 13.
    D.C. Radford, Nucl. Instrum. Methods Phys. Res. A 361, 297 (1995).CrossRefGoogle Scholar
  14. 14.
    I. Deloncle, M.-G. Porquet, M. Dziri-Marcé, Nucl. Instrum. Methods Phys. Res. A 357, 150 (1995).CrossRefGoogle Scholar
  15. 15.
    I. Deloncle, private communication.Google Scholar
  16. 16.
    T. Kutsarova , The Nucleus: New Physics for the New Millennium, edited by F.D. Smit (Kluwer Academic/Plenum Publishers, New York, 2000) p. 261.Google Scholar
  17. 17.
    I. Deloncle , Eur. Phys. J. A8, 177 (2000).Google Scholar
  18. 18.
    L.E. Svensson , Nucl. Phys. A 584, 547 (1995).CrossRefGoogle Scholar
  19. 19.
    J.A. Grau , Phys. Rev. C 14, 2297 (1976).CrossRefGoogle Scholar
  20. 20.
    J.A. Pinston , Nucl. Phys. A 133, 124 (1969).CrossRefGoogle Scholar
  21. 21.
    I.Y. Lee , Phys. Rev. C 25, 1865 (1982).CrossRefGoogle Scholar
  22. 22.
    M. Pignanelli , Nucl. Phys. A 519, 567 (1990).CrossRefGoogle Scholar
  23. 23.
    G. Lhersonneau , Phys. Rev. C 60, 014315 (1999).CrossRefGoogle Scholar
  24. 24.
    M.A.C. Hotchkins , Nucl. Phys. A 530, 111 (1991).CrossRefGoogle Scholar
  25. 25.
    L. Wilets, M. Jean, Phys. Rev. C 102, 788 (1956).CrossRefzbMATHGoogle Scholar
  26. 26.
    S. Juutinen , Nucl. Phys. A 573, 306 (1994).CrossRefGoogle Scholar
  27. 27.
    R. Bengtsson, S. Frauendorf, Nucl. Phys. A 327, 139 (1979).CrossRefGoogle Scholar
  28. 28.
    T. Kutsarova , Phys. Rev. C 58, 1966 (1998).CrossRefGoogle Scholar
  29. 29.
    J.A. Shannon , Phys. Lett. B 336, 136 (1994).CrossRefGoogle Scholar
  30. 30.
    Z.Q. Zhang , Phys. Rev. C 63, 027302 (2001).CrossRefGoogle Scholar
  31. 31.
    A.S. Davidov, G.F. Filippov, Nucl. Phys. A 8, 237 (1958).CrossRefGoogle Scholar
  32. 32.
    D. Bonatsos, Phys. Lett. B 200, 1 (1988).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • S. Lalkovski
    • 1
    • 2
    Email author
  • A. Minkova
    • 1
    • 2
    • 3
  • M.-G. Porquet
    • 1
  • A. Bauchet
    • 1
  • I. Deloncle
    • 1
  • A. Astier
    • 4
  • N. Buforn
    • 4
  • L. Donadille
    • 5
  • O. Dorvaux
    • 6
  • B. P. J. Gall
    • 6
  • R. Lucas
    • 7
  • M. Meyer
    • 4
  • A. Prévost
    • 4
  • N. Redon
    • 4
  • N. Schulz
    • 6
  • O. Stézowski
    • 4
  1. 1.CSNSM IN2P3-CNRS and Université Paris-SudOrsayFrance
  2. 2.University of Sofia St. Kliment OhridskiSofiaBulgaria
  3. 3.INRNEBulgarian Academy of SciencesSofiaBulgaria
  4. 4.IPNL, IN2P3-CNRS and Université Claude BernardVilleurbanne CedexFrance
  5. 5.University of BirminghamBirminghamUK
  6. 6.IReS, IN2P3-CNRS and Université Louis PasteurStrasbourgFrance
  7. 7.Commissariat á l’Énergie AtomiqueCEA/Saclay, DSM/DAPNIA/SPhNGif-sur-Yvette CedexFrance

Personalised recommendations