On pionic hydrogen. Quantum field theoretic, relativistic covariant and model-independent approach

  • A. N. IvanovEmail author
  • M. Faber
  • A. Hirtl
  • J. Marton
  • N. I. Troitskaya


We consider pionic hydrogen \(A_{\pi p}\), the bound \(\pi^- p\) state. Within the quantum field theoretic and relativistic covariant approach we calculate the shift and width of the energy level of the ground state of pionic hydrogen caused by strong low-energy interactions treated perturbatively. The generalization of the Deser-Goldberger-Baumann-Thirring (DGBT) formulas (S. Deser, M.L. Goldberger, K. Baumann, W. Thirring, Phys. Rev. 96, 774 (1954)) is given. The generalized DGBT formulas for the energy level displacement of the ground state of pionic hydrogen contain the non-perturbative and model-independent correction of about \(1\%\), caused by the relativistic covariant smearing of the wave function of the ground state around the origin. This non-perturbative correction is very important for the precise extraction of the S-wave scattering lengths of the \(\pi N\) scattering from the experimental data on the energy level displacements in pionic hydrogen by the PSI Collaboration. In addition, the shift of the energy level of the ground state of pionic hydrogen is improved by the second-order correction of strong low-energy interactions which is about 0.1%. This testifies the applicability of the perturbative treatment of strong low-energy interactions to the analysis of pionic hydrogen. We show that the width of the energy level of the ground state of pionic hydrogen is valid to all orders of the perturbation theory in strong low-energy interactions.


Hydrogen Experimental Data Wave Function Energy Level Perturbation Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Deser, M.L. Goldberger, K. Baumann, W. Thirring, Phys. Rev. 96, 774 (1954).CrossRefGoogle Scholar
  2. 2.
    K.A. Brueckner, Phys. Rev. 93, 769 (1955)CrossRefGoogle Scholar
  3. 3.
    A. Deloff, Phys. Rev. C 13, 730 (1976).CrossRefGoogle Scholar
  4. 4.
    K. Hagiwara , Phys. Rev. D 66, 010001 (2002).CrossRefGoogle Scholar
  5. 5.
    The PSI Collaboration (D.F. Anagnostopoulos ), Nucl. Phys. A 721, 849 (2003)CrossRefGoogle Scholar
  6. 6.
    V.E. Lyubovitskij, A. Rusetsky, Phys. Lett. B 494, 9 (2000).CrossRefGoogle Scholar
  7. 7.
    V.E. Lyubovitskij, Th. Gutsche, A. Faessler, R. Vinh Mau, Phys. Lett. B 520, 204 (2001).CrossRefGoogle Scholar
  8. 8.
    D. Sigg, A. Baderscher, P.F.A. Goudsmit, H.J. Leisi, G.C. Oades, Nucl. Phys. A 609, 310 (1996).CrossRefGoogle Scholar
  9. 9.
    H.-Ch. Schröder , Eur. Phys. J. C 21, 473 (2001).Google Scholar
  10. 10.
    S. Adler, Phys. Rev. 137, B1022 (1965)Google Scholar
  11. 11.
    S. Weinberg, Phys. Rev. Lett. 17, 616 (1966).CrossRefGoogle Scholar
  12. 12.
    S.S. Schweber, in An Introduction to Relativistic Quantum Field Theory, (Row, Peterson and Co., Evanston, Illinois, Elmsford, New York, 1961).Google Scholar
  13. 13.
    C. Itzykson, J.-B. Zuber, in Quantum Field Theory (McGraw-Hill Book Co., New York, 1980).Google Scholar
  14. 14.
    V. De Alfaro, S. Fubini, G. Furlan, C. Rossetti, in Currents in Hadron Physics, (North-Holland Publishing Co., Amsterdam, London, American Elsevier Publishing Co., Inc., New York, 1973).Google Scholar
  15. 15.
    N.N. Bogoliubov, D.V. Shirkov, in Introduction to the Theory of Quantized Fields (Interscience Publishers, Inc., New York, 1959) p. 638.Google Scholar
  16. 16.
    See [13] pp. 251-260.Google Scholar
  17. 17.
    H. Bethe, Phys. Rev. 72, 339 (1947).CrossRefzbMATHGoogle Scholar
  18. 18.
    See [12] pp. 524-531 and references therein.Google Scholar
  19. 19.
    H.A. Kramers, in Rapports du 8e Conseil Solvay 1948, edited by R. Stoops (Brussels, 1950) p. 241Google Scholar
  20. 20.
    H. Bethe, L.M. Brown, J.R. Stehn, Phys. Rev. 77, 370 (1950).CrossRefGoogle Scholar
  21. 21.
    J.M. Harriman, Phys. Rev. 101, 594 (1956).CrossRefGoogle Scholar
  22. 22.
    J.L. Uretsky, T.R. Palfrey, Phys. Rev. 121, 1798 (1961).CrossRefGoogle Scholar
  23. 23.
    J. Gasser, V.E. Lyubovitskij, A. Rusetsky, PiN Newslett. 15, 197 (1999), hep-ph/9911260Google Scholar
  24. 24.
    M. Abramowitz, I.E. Stegun (Editors), Handbook of Mathematical Functions, with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards Applied Mathematics Series, Vol. 55 (U.S. Department of Commerce, 1972).Google Scholar
  25. 25.
    See [24] p. 376 formula (9.6.25).Google Scholar
  26. 26.
    See [24] p. 375 formula (9.6.6).Google Scholar
  27. 27.
    See [24] p. 376 formula (9.6.28).Google Scholar
  28. 28.
    See [24] p. 486 formula (11.4.22).Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • A. N. Ivanov
    • 1
    • 2
    Email author
  • M. Faber
    • 1
    • 2
  • A. Hirtl
    • 1
    • 2
  • J. Marton
    • 1
    • 2
  • N. I. Troitskaya
    • 1
    • 2
  1. 1.Atominstitut der Österreichischen Universitäten, Arbeitsbereich Kernphysik und Nukleare AstrophysikTechnische Universität WienWienAustria
  2. 2.Institut für MittelenergiephysikÖsterreichische Akademie der WissenschaftenWienAustria

Personalised recommendations