Advertisement

Inverse Kramers formula and fusion dynamics of heavy ions

  • D. BoilleyEmail author
  • Y. Abe
  • J.-D. Bao
Article

Abstract.

Fusion probability of colliding heavy ions is evaluated by exactly solving a Langevin equation with a parabolic potential barrier. The model, which accommodates dissipation in the approaching phase, leads to an inverse Kramers formula and an expression of the extra-push energy. In the very specific case of an overdamped regime, an Arrhenius-type formula is obtained.

Keywords

Potential Barrier Langevin Equation Fusion Probability Fusion Dynamic Overdamped Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Hofmann, Rep. Prog. Phys. 61, 210 (1996).Google Scholar
  2. 2.
    P. Armbruster, Annu. Rev. Nucl. Part. Sci. 50, 411 (2000).CrossRefGoogle Scholar
  3. 3.
    G. Kosenko, C. Shen, Y. Abe, J. Nucl. Radiochem. Sci. 3, 19 (2002).Google Scholar
  4. 4.
    C. Shen, G. Kosenko, Y. Abe, Phys. Rev. C 66, 061602(R) (2002).CrossRefGoogle Scholar
  5. 5.
    C.E. Aguiar, V.C. Barbosa, D. Donangelo, S.R. Souza, Nucl. Phys. A 491, 301 (1989)CrossRefGoogle Scholar
  6. 6.
    Y. Abe, Eur. Phys. J. A 13, 143 (2002)CrossRefGoogle Scholar
  7. 7.
    G.G. Adamian, N.V. Antonenko, W. Scheid, V.V. Volkov, Nucl. Phys. A 627, 321 (1997).Google Scholar
  8. 8.
    Y. Abe, Y. Aritomo, T. Wada, M. Ohta, J. Phys. G 23, 1275 (1997)CrossRefGoogle Scholar
  9. 9.
    W.J. Swiatecki, K. Siwek-Wilczynska, J. Wilczynski, Acta Phys. Pol. B 34, 2049 (2003).Google Scholar
  10. 10.
    Y. Abe, S. Ayik, P.-G. Reinhard, E. Suraud, Phys. Rep. 275, 49 (1996).CrossRefMathSciNetGoogle Scholar
  11. 11.
    P. Fröbrich, I.I. Gontchar, Phys. Rep. 292, 131 (1998).CrossRefGoogle Scholar
  12. 12.
    H.A. Kramers, Physica VII 4, 284 (1940).Google Scholar
  13. 13.
    J.D. Bao, D. Boilley, Nucl. Phys. A 707, 47 (2002).CrossRefGoogle Scholar
  14. 14.
    D. Boilley, in preparation.Google Scholar
  15. 15.
    Y. Abe, D. Boilley, B.G. Giraud, T. Wada, Phys. Rev. E 61, 1125 (2000).CrossRefGoogle Scholar
  16. 16.
    G.E. Uhlenbeck, L.S. Ornstein, Phys. Rev. 36, 823 (1930).CrossRefGoogle Scholar
  17. 17.
    S. Chandrasekhar, Rev. Mod. Phys. 15, 1 (1943).CrossRefzbMATHGoogle Scholar
  18. 18.
    H. Hofmann, R. Samhammer, Z. Phys. A 322, 157 (1985).Google Scholar
  19. 19.
    H. Hofmann, P.J. Siemens, Phys. Lett. B 58, 417 (1975).CrossRefGoogle Scholar
  20. 20.
    A.B. Quint, W. Reisdorf, P. Armbruster, F.P. Heßberger, S. Hofmann, J. Keller, G. Müzenberg, H. Stelzer, H.-G. Clerc, W. Morawek, C.-C. Sahm, Z. Phys. A 346, 199 (1993).Google Scholar
  21. 21.
    J.D. Bao, D. Boilley, Y. Abe, in preparation.Google Scholar
  22. 22.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.GANILCaen cedexFrance
  2. 2.Yukawa Institute for Theoretical PhysicsKyoto UniversityKyotoJapan
  3. 3.Department of PhysicsBeijing Normal UniversityBeijingPRC

Personalised recommendations