Nonperturbative contribution to the quark form factor within the instanton model

  • A. E. DorokhovEmail author
  • I. O. Cherednikov


The nonperturbative effects in the quark form factor are considered in the Wilson loop formalism, within the framework of the instanton liquid model. For the integration path corresponding to this form factor, the explicit expression for the vacuum expectation value of the Wilson operator is found to the leading order. It is shown that the instantons produce the power-like corrections to the perturbative result, which are comparable in magnitude with the perturbative part at the scale of order of the inverse average instanton size. It is demonstrated that the instanton contributions to the quark form factor are exponentiated to high orders in the small instanton density parameter.


Wilson Loop Integration Path Vacuum Expectation Loop Formalism Liquid Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu.M. Makeenko, A.A. Migdal, Phys. Lett. B 88, 135 (1979)CrossRefGoogle Scholar
  2. 2.
    A. Bassetto, M. Ciafaloni, G. Marchesini, Phys. Rep. 100, 201 (1983)CrossRefGoogle Scholar
  3. 3.
    G. Korchemsky, Phys. Lett. B 217, 330 (1989).CrossRefGoogle Scholar
  4. 4.
    V. Dotsenko, S. Vergeles, Nucl. Phys. B 169, 527 (1980)MathSciNetGoogle Scholar
  5. 5.
    A.E. Dorokhov, I.O. Cherednikov, Phys. Rev. D 66, 074009 (2002), hep-ph/0204172.CrossRefGoogle Scholar
  6. 6.
    G. Korchemsky, A. Radyushkin, Nucl. Phys. B 283, 342 (1987).CrossRefGoogle Scholar
  7. 7.
    E. Meggiolaro, Phys. Rev. D 53, 3835 (1996).CrossRefGoogle Scholar
  8. 8.
    E. Shuryak, hep-ph/9909458.Google Scholar
  9. 9.
    A.E. Dorokhov, S.V. Esaibegyan, S.V. Mikhailov, Phys. Rev. D 56, 4062 (1997)CrossRefGoogle Scholar
  10. 10.
    D.A. Smith, M.J. Teper, Phys. Rev. D 58, 014505 (1998)CrossRefGoogle Scholar
  11. 11.
    E. Shuryak, I. Zahed, Phys. Rev. D 62, 085014 (2000)CrossRefGoogle Scholar
  12. 12.
    M. Beneke, Phys. Rep. 317, 1 (1999).CrossRefGoogle Scholar
  13. 13.
    E. Shuryak, Nucl. Phys. B 203, 93CrossRefGoogle Scholar
  14. 14.
    J.G.M. Gatheral, Phys. Lett. B 133, 90 (1983)CrossRefMathSciNetGoogle Scholar
  15. 15.
    C.G. Callan, R. Dashen, D.J. Gross, Phys. Rev. D 17, 2717 (1978).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Bogolyubov Laboratory of Theoretical PhysicsJoint Institute for Nuclear ResearchDubnaRussia
  2. 2.Institute for Theoretical Problems of MicrophysicsMoscow State UniversityMoscowRussia

Personalised recommendations