Advertisement

Nuclear forces and currents in large-N C QCD

  • D. O. RiskaEmail author
Article

Abstract.

Expression of the nucleon-nucleon interaction to leading order in 1/N C in terms of Fermi invariants allows a dynamical interpretation of the interaction and a consistent construction of the associated interaction currents. The numerically significant components of 4 different modern realistic phenomenological interaction models admit very similar meson exchange interpretations in the large-N C limit. The ratio of the volume integrals of the leading, next-to-leading and next-to-next leading-order terms in these interaction models is roughly \(300: 5\mbox{--}10: 0.1\), which corresponds fairly well to the ratios of 1/N C 2 between the terms that would be suggested by the 1/N C expansion if N C = 3.

Keywords

Interaction Model Significant Component Volume Integral Nuclear Force Interaction Current 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Jenkins, Ann. Rev. Nucl. Sci. 48, 41 (1999).Google Scholar
  2. 2.
    D.B. Kaplan, A.V. Manohar, Phys. Rev. C 56, 76 (1997).CrossRefGoogle Scholar
  3. 3.
    M. Kirchbach, D.O. Riska, K. Tsushima, Nucl. Phys. A 542, 616 (1992).CrossRefGoogle Scholar
  4. 4.
    K. Tsushima, D.O. Riska, P.G. Blunden, Nucl. Phys. A 559, 543 (1993).CrossRefGoogle Scholar
  5. 5.
    D.O. Riska, eprint nucl-th/0204016Google Scholar
  6. 6.
    R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995).CrossRefGoogle Scholar
  7. 7.
    R. Machleidt, Phys. Rev. C 63, 024001 (2001).CrossRefGoogle Scholar
  8. 8.
    V.G.J. Stoks, Phys. Rev. C 49, 2950 (1994).CrossRefGoogle Scholar
  9. 9.
    M. Lacombe, Phys. Rev. C 21, 861 (1980).CrossRefGoogle Scholar
  10. 10.
    M.L. Goldberger, Phys. Rev. 120, 2250 (1960).CrossRefGoogle Scholar
  11. 11.
    A. Wirzba, M. Kirchbach, D.O. Riska, J. Phys. G 20, 1583 (1994).CrossRefGoogle Scholar
  12. 12.
    M.H. Partovi, E.L. Lomon, Phys. Rev. Lett. 22, 438 (1969).CrossRefGoogle Scholar
  13. 13.
    M. Chemtob, J.W. Durso, D.O. Riska, Nucl. Phys. B 38, 141 (1972).CrossRefGoogle Scholar
  14. 14.
    D.O. Riska, G.E. Brown, Nucl. Phys. A 53, 8 (1970).CrossRefGoogle Scholar
  15. 15.
    R. Machleidt, K. Holinde, Ch. Elster, Phys. Rep. 149, 1 (1987).Google Scholar
  16. 16.
    P.G. Blunden, D.O. Riska, Nucl. Phys. A 536, 697 (1992).CrossRefGoogle Scholar
  17. 17.
    G. Höhler, Nucl. Phys. B 144, 505 (1976).CrossRefGoogle Scholar
  18. 18.
    L. Tiator, C. Bennhold, S.S. Kamalov, Nucl. Phys. A 580, 455 (1994).CrossRefGoogle Scholar
  19. 19.
    K. Kubodera, J. Delorme, M. Rho, Phys. Rev. Lett. 40, 755 (1978).CrossRefGoogle Scholar
  20. 20.
    T. Minamisono, Phys. Rev. C 65, 015209 (2002).CrossRefGoogle Scholar
  21. 21.
    E.K. Warburton, Phys. Rev. Lett. 66, 1823 (1991).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Helsinki Institute of Physics and Department of Physical SciencesUniversity of HelsinkiFinland

Personalised recommendations