In-medium chiral perturbation theory

  • A. WirzbaEmail author
  • Ulf-G Meißner
  • J. A. Oller


We report on how to tackle the problem of establishing a chiral effective field theory in nuclear matter with explicit pion fields and in the presence of external sources (Ann. Phys. 297, 27 (2002)). We have made use of the results of J.A. Oller (Phys. Rev. C 65, 025204 (2002)) where the generating functional for the in-medium chiral SU(2) x SU(2) Lagrangian has been derived. Within this approach we develop the so-called standard power counting rules for the calculation of in-medium pion properties if the residual nucleon energies are of the order of the pion mass. In addition, for the case of vanishing residual nucleon energies, a modified scheme (non-standard counting) is introduced. For both schemes the pertinent scales where the chiral expansions have to break down are established as well. We have performed a systematic analysis of n-point in-medium Green functions up to and including next-to-leading order when the standard rules apply. These include the in-medium contributions to quark condensates, pion propagators, pion masses and couplings of the axial-vector, vector and pseudoscalar currents to pions.


Field Theory Perturbation Theory External Source Nuclear Matter Effective Field 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    U.-G. Meißner, J.A. Oller, A. Wirzba, Ann. Phys. 297, 27 (2002).CrossRefGoogle Scholar
  2. 2.
    J.A. Oller, Phys. Rev. C 65, 025204 (2002).CrossRefGoogle Scholar
  3. 3.
    S. Weinberg, Physica A 96, 327 (1979).CrossRefGoogle Scholar
  4. 4.
    J. Gasser, H. Leutwyler, Ann. Phys. (N.Y.) 158, 142 (1984).Google Scholar
  5. 5.
    D.B. Kaplan, A.E. Nelson, Phys. Lett. B 175, 57 (1986).CrossRefGoogle Scholar
  6. 6.
    G.E. Brown, K. Kubodera, M. Rho, V. Thorsson, Phys. Lett. B 291, 355 (1992)CrossRefGoogle Scholar
  7. 7.
    V. Thorsson, A. Wirzba, Nucl. Phys. A 589, 633 (1995)CrossRefGoogle Scholar
  8. 8.
    M. Kirchbach, A. Wirzba, Nucl. Phys. A 604, 395 (1996)CrossRefGoogle Scholar
  9. 9.
    N. Fettes, U.-G. Meißner, S. Steininger, Nucl. Phys. A 640, 199 (1998).CrossRefGoogle Scholar
  10. 10.
    N. Fettes, U.-G. Meißner, Nucl. Phys. A 676, 311 (2000).CrossRefGoogle Scholar
  11. 11.
    J. Gasser, M.E. Sainio, A. Svarc, Nucl. Phys. B 307, 779 (1988).CrossRefGoogle Scholar
  12. 12.
    E.G. Drukarev, E.M. Levin, Prog. Part. Nucl. Phys. 27, 77 (1991).CrossRefGoogle Scholar
  13. 13.
    T.D. Cohen, R.J. Furnstahl, D.K. Griegel, Phys. Rev. C 45, 1881 (1992).CrossRefGoogle Scholar
  14. 14.
    V. Bernard, N. Kaiser, U.-G. Meißner, Nucl. Phys. A 615, 483 (1997).CrossRefGoogle Scholar
  15. 15.
    P. Büttiker, U.-G. Meißner, Nucl. Phys. A 668, 97 (2000).CrossRefGoogle Scholar
  16. 16.
    H. Gilg, Phys. Rev. C 62, 025201 (2000).CrossRefGoogle Scholar
  17. 17.
    K. Itahasi, Phys. Rev. C 62, 025202 (2000).CrossRefGoogle Scholar
  18. 18.
    N. Kaiser, W. Weise, Phys. Lett. B 512, 283 (2001).CrossRefGoogle Scholar
  19. 19.
    M. Kirchbach, D.O. Riska, Nucl. Phys. A 578, 511 (1994).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Institut für Kernphysik (Theorie)Forschungszentrum JülichJülichGermany
  2. 2.Departamento de FísicaUniversidad de MurciaMurciaSpain

Personalised recommendations