Few-body correlations in the QCD phase diagram

  • M. BeyerEmail author


From the viewpoint of statistical physics, nuclear matter is a strongly correlated many-particle system. Several regimes of the QCD phase diagram should exhibit strong correlations. Here I focus on three- and four-body correlations that might be important in the phase diagram.


Statistical Physic Phase Diagram Strong Correlation Nuclear Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Kuhrts, M. Beyer, P. Danielewicz, G. Röpke, Phys. Rev. C 63, 034605 (2001) and references therein.CrossRefGoogle Scholar
  2. 2.
    M. Beyer, S.A. Sofianos, C. Kuhrts, G. Röpke, P. Schuck, Phys. Lett. B 488, 247 (2000).CrossRefGoogle Scholar
  3. 3.
    G. Röpke, A. Schnell, P. Schuck, P. Nozieres, Phys. Rev. Lett. 80, 3177 (1998).CrossRefGoogle Scholar
  4. 4.
    A. Tohsaki, H. Horiuchi, P. Schuck, G. Ropke, Phys. Rev. Lett. 87, 192501 (2001).CrossRefGoogle Scholar
  5. 5.
    Y. Suzuki, M. Takahashi, Phys. Rev. C 65, 064318 (2002).CrossRefGoogle Scholar
  6. 6.
    M. Himmerich, M. Letz, Phys. Rev. B 64, 144519 (2001).CrossRefGoogle Scholar
  7. 7.
    D. Blaschke, F. Karsch, C.D. Roberts (Editors), Proceedings of the International Workshop on Understanding Deconfinement in QCD, Trento, 1-13 March, 1999 (World Scientific, Singapore, 1999) p. 354.Google Scholar
  8. 8.
    L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (Benjamin, New York, 1962)Google Scholar
  9. 9.
    M. Beyer, G. Röpke, A. Sedrakian, Phys. Lett. B 376, 7 (1996).CrossRefGoogle Scholar
  10. 10.
    M. Beyer, Few-Body Syst. Suppl. 10, 179 (1999).Google Scholar
  11. 11.
    M. Beyer, W. Schadow, C. Kuhrts, G. Röpke, Phys. Rev. C 60, 034004 (1999).CrossRefGoogle Scholar
  12. 12.
    J. Dukelsky, G. Röpke, P. Schuck, Nucl. Phys. A 628, 17 (1998).CrossRefGoogle Scholar
  13. 13.
    P.A. Dirac, Rev. Mod. Phys. 21, 392 (1949).CrossRefzbMATHGoogle Scholar
  14. 14.
    M. Beyer, S. Mattiello, T. Frederico, H.J. Weber, Phys. Lett. B 521, 33 (2001).CrossRefzbMATHGoogle Scholar
  15. 15.
    S. Mattiello, M. Beyer, T. Frederico, H.J. Weber, Few-Body Syst. 31, 159 (2002).CrossRefGoogle Scholar
  16. 16.
    E.O. Alt, P. Grassberger, W. Sandhas, Nucl. Phys. B 2, 167 (1967).CrossRefGoogle Scholar
  17. 17.
    INDRA Collaboration (D. Gorio), Eur. Phys. J. A 7, 245 (2000) and references therein.Google Scholar
  18. 18.
    P. Danielewicz, G.F. Bertsch, Nucl. Phys. A 533, 712 (1991).CrossRefGoogle Scholar
  19. 19.
    P. Danielewicz, Q. Pan, Phys. Rev. C 46, 2002 (1992).CrossRefGoogle Scholar
  20. 20.
    M. Beyer, G. Röpke, Phys. Rev. C 56, 2636 (1997).CrossRefGoogle Scholar
  21. 21.
    C. Kuhrts, M. Beyer, G. Röpke, Nucl. Phys. A 668, 137 (2000).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Fachbereich PhysikUniversität RostockRostockGermany

Personalised recommendations