Advertisement

Measurement of \(\pi^-\) and \(\pi^ + \) photoproduction in deuterium at large momentum transfer for E = 1.7-5.6 GeV

  • H. XiangEmail author
Article

Abstract.

Single-\(\pi^{-}\) and -\(\pi^{ + }\) photoproduction from deuterium has been measured at energies E = 1.7-5.6 GeV and momentum transfers |t| = 0.4-5.6 (GeV/c 2). The ratio \(\pi^{-}\)/ \(\pi^{ + }\) for data taken at E = 3.4 GeV is presented. Also the ratio of the \(\pi^{ + }\) from hydrogen to the \(\pi^{ + }\) from deuterium is extracted to examine the nucleon spectator assumption used in the cross-section ratio analysis. Results are discussed in conjunction with the existing measurements with frameworks ranging from a hadronic description to parton constituent models which successfully characterize the scaling behaviors observed in the exclusive measurements.

Keywords

Hydrogen Deuterium Momentum Transfer Large Momentum Ratio Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Guidal, Phys. Lett. B 400, 6 (1997).CrossRefGoogle Scholar
  2. 2.
    M. Rahnama, J.K. Storrow, J. Phys. G, 17, 243 (1991).Google Scholar
  3. 3.
    E.C. Schulte, Phys. Rev. Lett. 87, 102302 (2001).Google Scholar
  4. 4.
    C. Bochna, Phys. Rev. Lett. 81, 4576 (1998).CrossRefGoogle Scholar
  5. 5.
    E. Auge, Phys. Lett. B 168, 163 (1986).CrossRefGoogle Scholar
  6. 6.
    P. Aurenche, Phys. Lett. B 135, 164 (1984).CrossRefGoogle Scholar
  7. 7.
    K. Wijesooriya, Phys. Rev. Lett. 14, 2975 (2001).CrossRefGoogle Scholar
  8. 8.
    K. Wijesooriya, Phys. Rev. Lett. 66, 034614 (2002).CrossRefGoogle Scholar
  9. 9.
    S.J. Brodsky, Phys. Lett. B 449, 306 (1997).CrossRefGoogle Scholar
  10. 10.
    X. Ji, Phys. Rev. D 55, 7114 (1997).CrossRefGoogle Scholar
  11. 11.
    X. Ji, J. Osborne, Phys. Rev. D 58, 094018 (1998).CrossRefGoogle Scholar
  12. 12.
    A.V. Radyushkin, Phys. Rev. D 56, 5524 (1997).CrossRefGoogle Scholar
  13. 13.
    J.C. Collins, Phys. Rev. D 56, 2982 (1997).CrossRefGoogle Scholar
  14. 14.
    C.E. Carlson, A.B. Wakely, Phys. Rev. D 48, 2000 (1993).CrossRefGoogle Scholar
  15. 15.
    A. Afanasev, C.E. Carlson, C. Wahlquist, Phys. Rev. D 58, 054007 (1998).CrossRefGoogle Scholar
  16. 16.
    Z. Bar-Yam, Phys. Rev. Lett. 19, 40 (1967).CrossRefGoogle Scholar
  17. 17.
    P. Heide, Phys. Rev. Lett. 21, 248 (1968).CrossRefGoogle Scholar
  18. 18.
    A.M. Boyarski, Phys. Rev. Lett. 21, 1767 (1968).CrossRefGoogle Scholar
  19. 19.
    H. Gao, R. Holt, JLab experiment E94-104.Google Scholar
  20. 20.
    R.L. Anderson, Phys. Rev. D 14, 679 (1976).CrossRefGoogle Scholar
  21. 21.
    L.Y. Zhu, in preparation.Google Scholar
  22. 22.
    S.J. Brodsky, G.R. Farrar, Phys. Rev. Lett. 31, 1153 (1973).CrossRefGoogle Scholar
  23. 23.
    S.J. Brodsky, G.R. Farrar, Phys. Rev. D 11, 1309 (1975).CrossRefGoogle Scholar
  24. 24.
    V.A. Matveev, Lett. Nuovo Cimento 7, 719 (1973).Google Scholar
  25. 25.
    G. Zweig, Nuovo Cimento 32, 689 (1964).Google Scholar
  26. 26.
    P. Stichel, Z. Phys. 178, 519 (1964).Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.MIT Laboratory for Nuclear ScienceCambridgeUSA

Personalised recommendations