Exclusive and semi-inclusive strangeness and charm production in \(\pi N\) and NN reactions

  • A. M. GasparyanEmail author
  • V. Yu Grishina
  • L. A. Kondratyuk
  • W. Cassing


Using the Quark-Gluon Strings Model (QGSM) combined with Regge phenomenology we consider the reactions \(\pi^- p \to K^0 \Lambda\) and \(\pi^- p \to D^- \Lambda_c^ + \) which are dominated by the contributions of the K * and D * Regge trajectories, respectively. The spin structure of the amplitudes is described by introducing Reggeized Born terms. It is found that the existing data for the reaction \(\pi^- p \to K^0 \Lambda\) are in reasonable agreement with the model predictions. To describe the absolute values of the cross-sections it is necessary to introduce also suppression factors which can be related to absorption corrections. Furthermore, assuming the SU(4) symmetry to hold for Regge residues and the universality of absorption corrections we calculate the cross-section of the reaction \(\pi^- p \to D^- \Lambda_c^ + \). Employing the latter results from \(\pi^- p\) reactions we then estimate the contributions of the pion exchange mechanism to the cross-sections of the reactions \(NN \to NK\Lambda\) and \(NN \to N\bar D \Lambda_c\) and compare them with the contributions of the K and D exchanges. We find that the NN reactions are dominated not by pion exchange but by K and D exchanges, respectively. Moreover, assuming the SU(4) symmetry to hold approximately for the coupling constants \(g_{ND \Lambda_c}\) = \(g_{NK \Lambda}\) we analyze also the production of leading \(\Lambda_c\)-hyperons in the reaction \(NN \to \Lambda_c X\). It is shown that the non-perturbative mechanism should give an essential contribution to the \(\Lambda_c\) yield for \(x \geq 0.5\).


Model Prediction Reasonable Agreement Suppression Factor Exchange Mechanism Spin Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Cassing, L.A. Kondratyuk, G.I. Lykasov, M.V. Rzjanin, Phys. Lett. B 513, 1 (2001).CrossRefGoogle Scholar
  2. 2.
    NA50 Collaboration (M.C. Abreu), Eur. Phys. J. C 14, 443 (2000).CrossRefGoogle Scholar
  3. 3.
    A.B. Kaidalov, Z. Phys. C 12, 63 (1982).Google Scholar
  4. 4.
    A.C. Irving, R.P. Worden, Phys. Rep. 34, 117 (1977).CrossRefGoogle Scholar
  5. 5.
    M. Guidal, J.-M. Laget, M. Vanderhaeghen, Nucl. Phys. A 627, 645 (1997).CrossRefGoogle Scholar
  6. 6.
    K.G. Boreskov, A.B. Kaidalov, Yad. Fiz. 37, 174 (1983).Google Scholar
  7. 7.
    Z.W. Lin, C.M. Ko, J. Phys. G 27, 617 (2001).CrossRefGoogle Scholar
  8. 8.
    T. Feuster, U. Mosel, Phys. Rev. C 58, 457 (1998).CrossRefGoogle Scholar
  9. 9.
    T. Yao, Phys. Rev. 125, 1048 (1961).CrossRefGoogle Scholar
  10. 10.
    A. Baldini, V. Flaminio, W.G. Moorhead, D.R. Morrison and H. Schopper, Total Cross-Sections for Reactions of High-Energy Particles, Landolt-Böernstein New Series, Vol. 1/12 (Springer-Verlag, Berlin, Heidelberg, 1988) pp. 409.Google Scholar
  11. 11.
    J. Cugnon, P. Deneye, J. Vandermeulen, Phys. Rev. C 41, 1701 (1990).CrossRefGoogle Scholar
  12. 12.
    S. Erhan, Phys. Lett. B 85, 447 (1979).CrossRefGoogle Scholar
  13. 13.
    W. Cassing, Y.S. Golubeva, L.A. Kondratyuk, Eur. Phys. J. A 7, 279 (2000).CrossRefGoogle Scholar
  14. 14.
    G. Bari, Nuovo Cimento A 104, 571 (1991).Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • A. M. Gasparyan
    • 1
    • 2
    Email author
  • V. Yu Grishina
    • 3
  • L. A. Kondratyuk
    • 1
    • 2
  • W. Cassing
    • 4
  1. 1.IKPForschungszentrum JülichJülichGermany
  2. 2.Institute for Theoretical and Experimental PhysicsMoscowRussia
  3. 3.Institute for Nuclear ResearchMoscowRussia
  4. 4.Institute for Theoretical PhysicsUniversity of GiessenGiessenGermany

Personalised recommendations