Moments of isovector quark distributions in lattice QCD

  • W. DetmoldEmail author
  • W. Melnitchouk
  • A. W. Thomas


We investigate the connection of lattice calculations of moments of isovector parton distributions to the physical regime through extrapolations in the quark mass. We consider the one-pion loop renormalisation of the nucleon matrix elements of the corresponding operators and thereby develop formulae with which to extrapolate the moments of the unpolarised, helicity and transversity distributions. These formulae are consistent with chiral perturbation theory in chiral limit and incorporate the correct heavy-quark limits. In the polarised cases, the inclusion of intermediate states involving the \(\Delta\)-isobar is found to be very important. The results of our extrapolations are in general agreement with the phenomenological values of these moments where they are known, and for the first time we make reliable predictions for the low moments of the isovector transversity distribution.


Matrix Element Perturbation Theory Intermediate State Quark Mass Parton Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Fukugita, Phys. Rev. Lett. 75, 2092 (1995)CrossRefGoogle Scholar
  2. 2.
    H.L. Lai, Eur. Phys. J. C 12, 375 (2000)CrossRefGoogle Scholar
  3. 3.
    W. Detmold, W. Melnitchouk, J.W. Negele, D.B. Renner, A.W. Thomas, Phys. Rev. Lett. 87, 172001 (2001).Google Scholar
  4. 4.
    W. Detmold, W. Melnitchouk, A.W. Thomas, Eur. Phys. J. direct C 13, 1 (2001).Google Scholar
  5. 5.
    W. Detmold, W. Melnitchouk, A.W. Thomas, Phys. Rev. D 66, 054501 (2002).CrossRefGoogle Scholar
  6. 6.
    W. Detmold, Nonperturbative approaches to Quantum Chromodynamics, PhD Thesis, University of Adelaide, 2002.Google Scholar
  7. 7.
    R.D. Young, A.W. Thomas, D. Leinweber, in preparation.Google Scholar
  8. 8.
    A.W. Thomas, W. Melnitchouk, F.M. Steffens, Phys. Rev. Lett. 85, 2892 (2000).CrossRefGoogle Scholar
  9. 9.
    D. Arndt, M.J. Savage, Nucl. Phys. A 697, 429 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    W. Detmold, D.B. Leinweber, W. Melnitchouk, A.W. Thomas, S.V. Wright, Pramana 57, 251 (2001).Google Scholar
  11. 11.
    S. Sasaki, T. Blum, S. Ohta, K. Orginos, Nucl. Phys. Proc. Suppl. 106, 302 (2002), arXiv:hep-lat/0110053.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of WashingtonSeattleUSA
  2. 2.Special Research Centre for the Subatomic Structure of MatterUniversity of AdelaideAdelaideAustralia
  3. 3.Jefferson LabNewport NewsUSA

Personalised recommendations