Infrared exponents and the running coupling of Landau gauge QCD and their relation to confinement

  • R. AlkoferEmail author
  • C. S. Fischer
  • L. von Smekal


The infrared behaviour of the gluon and ghost propagators in Landau gauge QCD is reviewed. The Kugo-Ojima confinement criterion and the Gribov-Zwanziger horizon condition result from quite general properties of the ghost Dyson-Schwinger equation. The numerical solutions for the gluon and ghost propagators obtained from a truncated set of Dyson-Schwinger equations provide an explicit example for the anticipated infrared behaviour. The results are in good agreement with corresponding lattice data obtained recently. The resulting running-coupling approaches a fix point in the infrared, \(\alpha(0) = 8.92/N_c\). Two different fits for the scale dependence of the running coupling are given and discussed.


Ghost General Property Lattice Data Scale Dependence Landau Gauge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Kugo, I. Ojima, Prog. Theor. Phys. Suppl. 66, 1 (1979).Google Scholar
  2. 2.
    V.N. Gribov, Nucl. Phys. B 139, 1 (1978).CrossRefGoogle Scholar
  3. 3.
    D. Zwanziger, Nucl. Phys. B 364, 127 (1991)MathSciNetGoogle Scholar
  4. 4.
    T. Kugo, in Proceedings of the International Symposium on the BRS symmetry, Kyoto, Sep. 18-22, 1995, edited by M. Abe, N. Nakanishi, I. Ojima (Universal Academic Press, Tokyo, 1996), arXiv:hep-th/9511033.Google Scholar
  5. 5.
    R. Alkofer, L. von Smekal, Phys. Rep. 353, 281 (2001), arXiv:hep-ph/0007355.CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    P. Watson, R. Alkofer, Phys. Rev. Lett. 86, 5239 (2001), arXiv:hep-ph/0102332CrossRefGoogle Scholar
  7. 7.
    C. Lerche, L. von Smekal, Phys. Rev. D 65, 125006 (2002), arXiv:hep-ph/0202194.CrossRefGoogle Scholar
  8. 8.
    C.S. Fischer, R. Alkofer, H. Reinhardt, Phys. Rev. D 65, 094008 (2002), arXiv:hep-ph/0202195.CrossRefGoogle Scholar
  9. 9.
    C.S. Fischer, R. Alkofer, Phys. Lett. B 536, 177 (2002), arXiv:hep-ph/0202202.CrossRefzbMATHGoogle Scholar
  10. 10.
    L. von Smekal, R. Alkofer, A. Hauck, Phys. Rev. Lett. 79, 3591 (1997), arXiv:hep-ph/9705242CrossRefGoogle Scholar
  11. 11.
    D. Zwanziger, Phys. Rev. D 65, 094039 (2002), arXiv:hep-th/0109224.CrossRefGoogle Scholar
  12. 12.
    F.D. Bonnet, P.O. Bowman, D.B. Leinweber, A.G. Williams, Phys. Rev. D 62, 051501 (2000), arXiv:hep-lat/0002020.CrossRefGoogle Scholar
  13. 13.
    F.D. Bonnet, P.O. Bowman, D.B. Leinweber, A.G. Williams, J.M. Zanotti, Phys. Rev. D 64, 034501 (2001), arXiv:hep-lat/0101013.CrossRefGoogle Scholar
  14. 14.
    K. Langfeld, H. Reinhardt, J. Gattnar, Nucl. Phys. B 621, 131 (2002), arXiv:hep-ph/0107141CrossRefzbMATHGoogle Scholar
  15. 15.
    D. Zwanziger, Phys. Rev. D 67, 105001 (2003), arXiv:hep-th/0206053.CrossRefGoogle Scholar
  16. 16.
    R. Alkofer, C.S. Fischer, L. von Smekal, Acta Phys. Slovaca 52, 191 (2002), arXiv:hep-ph/0205125.Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of TübingenTübingenGermany
  2. 2.Institute for Theoretical Physics IIIUniversity of Erlangen-NürnbergErlangenGermany

Personalised recommendations