Advertisement

On the decay properties of 269Hs and indications for the new nuclide 270Hs

  • A. Türler
  • Ch.E. Düllmann
  • H.W. Gäggeler
  • U.W. Kirbach
  • A.B. Yakushev
  • M. Schädel
  • W. Brüchle
  • R. Dressler
  • K. Eberhardt
  • B. Eichler
  • R. Eichler
  • T.N. Ginter
  • F. Glaus
  • K.E. Gregorich
  • D.C. Hoffman
  • E. Jäger
  • D.T. Jost
  • D.M. Lee
  • H. Nitsche
  • J.B. Patin
  • V. Pershina
  • D. Piguet
  • Z. Qin
  • B. Schausten
  • E. Schimpf
  • H.-J. Schött
  • S. Soverna
  • R. Sudowe
  • P. Thörle
  • S.N. Timokhin
  • N. Trautmann
  • A. Vahle
  • G. Wirth
  • P.M. Zielinski
Short Note

Abstract.

In bombardments of 248Cm with 143.7-146.8 MeV 26Mg ions the nuclides 269Hs and presumably 270Hs were produced. After chemical isolation, Hs atoms were identified by observing genetically linked nuclear-decay chains. Three chains originating from 269Hs confirmed the decay properties observed previously in the decay of 277112. Two chains exhibited the characteristics expected for the new nuclide 270Hs, which was predicted to be a deformed ”doubly magic” nucleus. From the measured \(E_\alpha =9.16^{+0.07}_{-0.03}\) MeV an \(\alpha\)-decay half-life of 3.6+0.8-1.4 s was estimated.

Keywords

Decay Property Chemical Isolation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Münzenberg , Z. Phys. A 317, 235 (1984).Google Scholar
  2. 2.
    G. Münzenberg , Z. Phys. A 324, 489 (1986).Google Scholar
  3. 3.
    Yu.A. Lazarev , Phys. Rev. Lett. 75, 1903 (1995).Google Scholar
  4. 4.
    S. Hofmann , Eur. Phys. J. A 10, 5 (2001).CrossRefGoogle Scholar
  5. 5.
    S. Hofmann , Z. Phys. A 354, 229 (1996).Google Scholar
  6. 6.
    A. Ghiorso , Phys. Rev. C 51, R2293 (1995).Google Scholar
  7. 7.
    Yu.Ts. Oganessian , Phys. Rev. Lett. 83, 3154 (1999).Google Scholar
  8. 8.
    S. Hofmann, G. Münzenberg, Rev. Mod. Phys. 72, 733 (2000).Google Scholar
  9. 9.
    S. Hofmann , Eur. Phys. J. A 14, 147 (2002).Google Scholar
  10. 10.
    Z. Patyk, A. Sobiczewski, S. Cwiok, Nucl. Phys. A 502, 591c (1989).Google Scholar
  11. 11.
    Z. Patyk, A. Sobiczewski, Nucl. Phys. A 533, 132 (1991).Google Scholar
  12. 12.
    A. Sobiczewski, I. Muntian, Z. Patyk, Phys. Rev. C 63, 034306 (2001).Google Scholar
  13. 13.
    R. Smolanczuk, J. Skalski, A. Sobiczewski, Phys. Rev. C 52, 1871 (1995).CrossRefGoogle Scholar
  14. 14.
    P. Möller, J.R. Nix, K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997).CrossRefGoogle Scholar
  15. 15.
    S. Liran, A. Marinov, N. Zeldes, Phys. Rev. C 62, 047301 (2001).Google Scholar
  16. 16.
    G. Royer, R.A. Gherghescu, Nucl. Phys. A 699, 479 (2002).Google Scholar
  17. 17.
    Z. Ren, Z.Y. Zhu, Y.H. Cai, G. Xu, J. Phys. G 22, 1793 (1996).Google Scholar
  18. 18.
    R. Malmbeck , Radiochim. Acta 89, 543 (2001).Google Scholar
  19. 19.
    Ch.E. Düllmann , Nucl. Instrum. Methods A 479, 631 (2002).Google Scholar
  20. 20.
    V.G. Pershina , J. Chem. Phys. 115, 792 (2001).Google Scholar
  21. 21.
    U.W. Kirbach , Nucl. Instrum. Methods A 484, 587 (2002).Google Scholar
  22. 22.
    W. Reisdorf, M. Schädel, Z. Phys. A 343, 47 (1992).Google Scholar
  23. 23.
    Yu.A. Lazarev , Phys. Rev. Lett. 73, 624 (1994).CrossRefGoogle Scholar
  24. 24.
    A. Türler , Phys. Rev. C 57, 1648 (1998).CrossRefGoogle Scholar
  25. 25.
    P. Eskola, K. Eskola, M. Nurmia, A. Ghiorso, Phys. Rev. C 2, 1058 (1970).Google Scholar
  26. 26.
    A. Ghiorso, M. Nurmia, K. Eskola, P. Eskola, Phys. Lett. B 32, 95 (1970).Google Scholar
  27. 27.
    B. Kadkhodayan , Radiochim. Acta 72, 169 (1996).Google Scholar
  28. 28.
    Yu.A. Lazarev , Phys. Rev. C 62, 064307 (2000).Google Scholar
  29. 29.
    M.R. Lane , Phys. Rev. C 53, 2893 (1996).Google Scholar
  30. 30.
    B. Buck, A.C. Merchant, S.M. Perez, J. Phys. G 17, 1223 (1991).Google Scholar
  31. 31.
    Ch.E. Düllmann , Nature 418, 859 (2002).Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  • A. Türler
    • 1
  • Ch.E. Düllmann
    • 2
    • 3
  • H.W. Gäggeler
    • 2
    • 3
  • U.W. Kirbach
    • 4
  • A.B. Yakushev
    • 5
  • M. Schädel
    • 6
  • W. Brüchle
    • 6
  • R. Dressler
    • 2
  • K. Eberhardt
    • 7
  • B. Eichler
    • 2
  • R. Eichler
    • 2
  • T.N. Ginter
    • 4
  • F. Glaus
    • 2
  • K.E. Gregorich
    • 4
  • D.C. Hoffman
    • 4
    • 8
  • E. Jäger
    • 6
  • D.T. Jost
    • 2
  • D.M. Lee
    • 4
  • H. Nitsche
    • 4
    • 8
  • J.B. Patin
    • 4
    • 8
  • V. Pershina
    • 6
  • D. Piguet
    • 2
  • Z. Qin
    • 9
  • B. Schausten
    • 6
  • E. Schimpf
    • 6
  • H.-J. Schött
    • 6
  • S. Soverna
    • 2
    • 3
  • R. Sudowe
    • 4
  • P. Thörle
    • 7
  • S.N. Timokhin
    • 5
  • N. Trautmann
    • 7
  • A. Vahle
    • 10
  • G. Wirth
    • 6
  • P.M. Zielinski
    • 4
    • 8
  1. 1.Institut für RadiochemieTU MünchenGarchingGermany
  2. 2.Institut für RadiochemiePaul Scherrer InstitutVilligen PSISwitzerland
  3. 3.Department of Chemistry and BiochemistryUniversity of BernBernSwitzerland
  4. 4.Nuclear Science DivisionLawrence Berkeley National LaboratoryBerkeleyUSA
  5. 5.Flerov Laboratory of Nuclear ReactionsJoint Institute for Nuclear ResearchDubna, Moscow RegionRussia
  6. 6.Flerov Laboratory of Nuclear ReactionsGesellschaft für Schwerionenforschung mbHDarmstadtGermany
  7. 7.Institut für KernchemieUniversität MainzMainzGermany
  8. 8.Department of ChemistryUniversity of CaliforniaBerkeleyUSA
  9. 9.Institute of Modern PhysicsChinese Academy of SciencesLanzhouPRC
  10. 10.Institute of Modern PhysicsResearch Center Rossendorf e.V.DresdenGermany

Personalised recommendations