Skip to main content
Log in

DTA/TG Study of the Interaction in the Nickel Nitrate Hexahydrate–Hexamethylentetramine System

  • PHYSICAL METHODS FOR INVESTIGATION OF CHEMICAL PROCESSES
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

This paper presents the results of DTA/TG studies of one of the most popular systems in solution combustion synthesis (SCS) nickel nitrate hexahydrate (Ni(NO3)2⋅6H2O)–hexamethylenetetramine (C6H12N4). X‑ray diffraction and EDS-assisted SEM are used for characterizing the reaction products. The specified system is studied in the form of a powder mixture, a gel obtained by dissolving the initial reagents in distilled water, and the same gel, heat treated at 100°C. It is established that the formation of metallic nickel is possible only if the mixture of reagents is first transferred to the gel state. The values of the effective activation energies of the formation of NiO and metallic nickel are calculated, and the features of the course of interactions depending on the method of preparation of the studied samples are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. Wena Wei and Wu Jin-Ming, Adv. RSC, 4, 58090 (2014). https://doi.org/10.1039/C4RA10145F

    Article  CAS  Google Scholar 

  2. A. S. Mukasyan and P. Dinka, Int. J. SHS 16, 23 (2007). https://doi.org/10.3103/S1061386207010049

    Article  CAS  Google Scholar 

  3. Kh. V. Manukyan, A. Cross, S. Roslyakov, et al., J. Phys. Chem. 117, 24417 (2013). https://doi.org/10.1021/jp408260m

    Article  CAS  Google Scholar 

  4. A. Varma, A. S. Mukasyan, A. S. Rogachev, and K. V. Manukyan, Chem. Rev. 23, 14493 (2016). https://doi.org/10.1021/acs.chemrev.6b00279

    Article  CAS  Google Scholar 

  5. S. L. González-Cortés and F. E. Imbert, Appl. Catal. A 452, 117 (2013). https://doi.org/10.1016/j.apcata.2012.11.024

    Article  CAS  Google Scholar 

  6. A. Khort, S. Roslyakov, and P. Loginov, Nano-Struct. Nano-Objects 26, 10072 (2021). https://doi.org/10.1016/j.nanoso.2021.100727

    Article  CAS  Google Scholar 

  7. S. T. Aruna and A. S. Mukasyan, Curr. Opin. Solid State Mater. Sci. 12, 44 (2008). https://doi.org/10.1016/j.cossms.2008.12.002

    Article  CAS  Google Scholar 

  8. K. C. Patil, S. T. Aruna, and T. Mimani, Curr. Opin. Solid State Mater. Sci. 6, 507 (2002). https://doi.org/10.1016/S1359-0286(02)00123-7

    Article  CAS  Google Scholar 

  9. K. Deshpande, A. S. Mukasyan, and A. Varma, Chem. Mater. 16, 4896 (2004). https://doi.org/10.1021/cm040061m

    Article  CAS  Google Scholar 

  10. E. Carlos, R. Martins, E. Fortunato, and R. Branquinho, Chem. Eur. J. 26, 9099 (2020). https://doi.org/10.1002/chem.202000678

    Article  CAS  PubMed  Google Scholar 

  11. P. Erri, J. Nader, and A. Varma, Adv. Mater. 20, 1243 (2008). https://doi.org/10.1002/adma.200701365

    Article  CAS  Google Scholar 

  12. A. Kumar, E. E. Wolf, and A. S. Mukasyan, AIChE J. 57, 3473 (2011). https://doi.org/10.1002/aic.12537

    Article  CAS  Google Scholar 

  13. Z. Yermekova, S. I. Roslyakov, D. Y. Kovalev, et al., J. Sol-Gel Sci. Technol. 94, 310 (2020). https://doi.org/10.1007/s10971-020-05252-9

    Article  CAS  Google Scholar 

  14. Yu. V. Tertyshnaya, M. V. Podzorova, T. V. Monakhova, and A. A. Popov, Khim. Fiz. 38 (3), 80 (2019). https://doi.org/10.1134/S0207401X19030105

    Article  Google Scholar 

  15. T. M. Ushakova, E. E. Starchak, S. S. Gostev, et al., Khim. Fiz. 39 (5), 66 (2020). https://doi.org/10.31857/S0207401X2005012X

    Article  Google Scholar 

  16. V. V. Zakharov, N. V. Chukanov, G. V. Shilov, et al., Khim. Fiz. 40 (7), 35 (2021). https://doi.org/10.31857/S0207401X21070128

    Article  Google Scholar 

  17. A. N. Perova, P. N. Brevnov, S. V. Usachev, et al., Khim. Fiz. 40 (7), 49 (2021). https://doi.org/10.31857/S0207401X21070074

    Article  Google Scholar 

  18. E. A. Gusev, S. V. Dalidovich, and L. I. Krasovskaya, Thermochim. Acta 93, 21 (1985). https://doi.org/10.1016/0040-6031(85)85006-1

    Article  CAS  Google Scholar 

  19. W. Brockner, C. Ehrhardt, and M. Gjikaj, Thermochim. Acta 456, 64 (2007). https://doi.org/10.1016/j.tca.2007.01.031

    Article  CAS  Google Scholar 

  20. E. G. Grigor’yan, O. M. Niazyan, and S. L. Kharatyan, Khim. Fiz. 27 (9), 54 (2008).

    Google Scholar 

  21. H. E. Kissinger, Anal. Chem. 29, 1702 (1957). https://doi.org/10.1021/ac60131a045

    Article  CAS  Google Scholar 

  22. S. Mansour, Thermochim. Acta 228, 173 (1993). https://doi.org/10.1016/0040-6031(93)80287-K

    Article  CAS  Google Scholar 

  23. D. Dollimore, G. A. Gamlen, and T. J. Taylor, Thermochim. Acta 51, 269 (1981). https://doi.org/10.1016/0040-6031(81)85164-7

    Article  CAS  Google Scholar 

  24. N. Amirkhanyan, S. Kharatyan, Kh. Manukyan, and A. Aprahamian, Combust. Flame 211, 119 (2020). https://doi.org/10.1016/j.combustflame.2020.07.038

    Article  CAS  Google Scholar 

  25. P. Afanasiev, S. Chouzier, T. Czeri, et al., Inorg. Chem. 47, 2303 (2008). https://doi.org/10.1021/ic7013013

    Article  CAS  PubMed  Google Scholar 

  26. A. S. Prakash, A. M. A. Khadar, K. C. Patil, et al., J. Mater. Synth. Process 10, 135 (2002). https://doi.org/10.1023/A:1021986613158

    Article  CAS  Google Scholar 

  27. P. Afanasiev, Inorg. Chem. 41, 5317 (2002). https://doi.org/10.1021/ic025564d

    Article  PubMed  Google Scholar 

  28. G. Singh, B. P. Baranwal, I. P. S. Kapoor, et al., J. Therm. Anal. Calorim. 91, 971 (2008). https://doi.org/10.1007/s10973-007-8615-5

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. G. Grigoryan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arzumanyan, A.S., Amirkhanyan, N.G., Grigoryan, Y.G. et al. DTA/TG Study of the Interaction in the Nickel Nitrate Hexahydrate–Hexamethylentetramine System. Russ. J. Phys. Chem. B 17, 122–127 (2023). https://doi.org/10.1134/S1990793123010177

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793123010177

Keywords:

Navigation