Advertisement

High Temperature

, Volume 46, Issue 1, pp 11–18 | Cite as

The parameters of plasma and the kinetics of generation and loss of active particles under conditions of discharge in chlorine

  • A. M. Efremov
  • V. I. Svettsov
  • D. V. Sitanov
Plasma Investigations

Abstract

The parameters of plasma and the kinetics of generation and loss of active particles are investigated under conditions of a dc glow discharge in chlorine (P = 40–280 Pa, i p = 5–15 mA). It is found that the generation of atoms in chlorine plasma is supported by the dissociation of Cl2 molecules under electron impact, and the contribution by dissociative attachment does not exceed 10%. Calculation data are obtained on the mass composition of neutral and charged particles of plasma. It is demonstrated that the assumption of the first kinetic order of heterogeneous loss of atoms provides for adequate agreement of the experimentally obtained and calculated values of E/N, of the concentration of chlorine atoms, and of the density of positive ion flux to the surface of discharge tube.

PACS numbers

52.80.Hc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Plazmennaya tekhnologiya v proizvodstve SBIS (Plasma Technology in the Production of VLSI), Einspruk, N. and Brown, D., Eds., Moscow: Mir, 1987 (Russ. transl.).Google Scholar
  2. 2.
    Danilin, B.S. and Kireev, V.Yu., Primenenie nizkotemperaturnoi plazmy dlya travleniya i ochistki materialov (Application of Low-Temperature Plasma in Etching and Cleaning of Materials), Moscow: Energoatomizdat, 1987.Google Scholar
  3. 3.
    Kupriyanovskaya, A.P. and Svettsov, V.I., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 1987, vol. 30, no. 9, p. 71.Google Scholar
  4. 4.
    Efremov, A.M., Kim, D.P., and Kim, C.I., Thin Solid Films, 2003, vol. 435, p. 83.CrossRefGoogle Scholar
  5. 5.
    Efremov, A.M. and Svetsov, V.I., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 2004, vol. 47, no. 2, p. 104.Google Scholar
  6. 6.
    Gorokhov, A.V., Maksimov, A.I., Sizov, V.D., and Stepanova, A.A., Zh. Tekh. Fiz., 1972, vol. 42, no. 10, p. 2176.Google Scholar
  7. 7.
    Lee, Y.T., Lieberman, M.A., Lichtenberg, A.J. et al., J. Vac. Sci. Technol. A, 1997, vol. 15, p. 113.CrossRefADSGoogle Scholar
  8. 8.
    Lee, C. and Lieberman, M.A., J. Vac. Sci. Technol. A, 1995, vol. 13, p. 368.CrossRefADSGoogle Scholar
  9. 9.
    Svetsov, V.I., Kupriyanovskaya, A.P., and Maryshev, A.B., Zh. Prikl. Spektrosk., 1981, vol. 35, no. 2, p. 205.Google Scholar
  10. 10.
    Okabe, H., Photochemistry of Small Molecules, New York: Wiley, 1978. Translated under the title Fotokhimiya malykh molekul, Moscow: Mir, 1981.Google Scholar
  11. 11.
    Efremov, A.M., Kupriyanovskaya, A.P., and Svettsov, V.I., Zh. Prikl. Spektrosk., 1993, vol. 59, no. 3–4, p. 221.Google Scholar
  12. 12.
    Morgan, W.L., Plasma Chem. Plasma Process., 1992, vol. 12, p. 449.CrossRefGoogle Scholar
  13. 13.
    Kupriyanovskaya, A.P., Rybkin, V.V., Sokolova, Yu.A., and Trostin, A.N., Kompilyatsiya dannykh po secheniyam elementarnykh protsessov dlya raschetov koeffitsientov skorostei protsessov v neravnovesnykh sistemakh (Compilation of Data on the Cross Sections of Elementary Processes for the Calculation of the Coefficients of Rates of Processes in Nonequilibrium Systems). Available from VINITI, Cherkassy, 1990, no. 921-V90.Google Scholar
  14. 14.
    Efremov, A.M., Svettsov, V.I., and Mikhalkin, V.P., Khim. Vys. Energ., 1995, vol. 29, p. 492.Google Scholar
  15. 15.
    Efremov, A.M. and Svettsov, V.I., Teplofiz. Vys. Temp., 2006, vol. 44, no. 2, p. 195 (High Temp. (Engl. transl.), vol. 44, no. 2, p. 189).Google Scholar
  16. 16.
    Donnelly, V.M., J. Vac. Sci. Technol. A, 1996, vol. 14, p. 1076.CrossRefADSGoogle Scholar
  17. 17.
    Pyerminoff, S.D. and Buenker, R.J., J. Chem. Phys., 1981, vol. 57, p. 279.CrossRefGoogle Scholar
  18. 18.
    Kravchenko, Yu.S., Osadchuk, V.S., and Slovetskii, D.I., Khim. Vys. Energ., 1989, vol. 27, p. 539.Google Scholar
  19. 19.
    Zimina, I.D., Maksimov, A.I., and Svettsov, V.I., Zh. Fiz. Khim., 1976, vol. 50, no. 5, p. 1209.Google Scholar
  20. 20.
    Brown, S.C., Basic Data of Plasma Physics, Cambridge, Mass.: MIT Press, 1959. Translated under the title Elementarnye protsessy v plazme gazovogo razryada, Moscow: Atomizdat, 1961.Google Scholar
  21. 21.
    Malyshev, M.V. and Donnelly, V.M., J. Appl. Phys., 2000, vol. 87, p. 1642.CrossRefADSGoogle Scholar
  22. 22.
    Malyshev, M.V., Donnelly, V.M., Kornblit, A., and Ciampa, N.A., J. Appl. Phys., 1998, vol. 84, p. 137.CrossRefADSGoogle Scholar
  23. 23.
    Efremov, A.M., Kim, D.P., and Kim, C.I., J. Vac. Sci. Technol. A, 2003, vol. 21, p. 1568.CrossRefADSGoogle Scholar
  24. 24.
    Clyne, M.A. and Stedmane, D.H., Trans. Faraday Soc., 1998, vol. 64, no. 550, p. 2968.Google Scholar
  25. 25.
    Kupriyanovskaya, A.P., Svetsov, V.I., and Rybkin, V.V., Izv. Vyssh. Uchebn. Zaved. Khim. Khim. Tekhnol., 1986, vol. 33, no. 9, p. 31.Google Scholar
  26. 26.
    Sitanov, D.V., Svetsov, V.I., and Islyaikin, A.M., Izmerenie veroyatnosti gibeli atomov na stekle v plazme khlora (Measurement of the Probability of Loss of Atoms in Chlorine Plasma). Available from NIITEKIM, Cherkassy, 1994, no. 21-khp94.Google Scholar
  27. 27.
    Lieberman, M.A. and Lichtenberg, A.J., Principles of Plasma Discharges and Materials Processing, New York: Wiley, 1994.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. M. Efremov
    • 1
  • V. I. Svettsov
    • 1
  • D. V. Sitanov
    • 1
  1. 1.Ivanovo State University of Chemical TechnologyIvanovoRussia

Personalised recommendations